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Abstract 

We use lobe dynamics in the restricted three-body problem to design orbits with 
prescribed itineraries with respect to the resonance regions within a Hill’s region. The 
application we envision is the design of a low energy trajectory to orbit three of Jupiter’s 
moons using the patched three-body approximation (P3BA). We introduce the “switch- 
ing region,” the P3BA analogue to the “sphere of influence.” Numerical results are given 
for the problem of finding the fastest trajectory from an initial region of phase space 
(escape orbits from moon A) to a target region (orbits captured by moon B) using small 
controls. 

INTRODUCTION 

Low energy trajectories have been increasingly investigated, due to the possibility of large 
savings in fuel cost (as compared to classical approaches) by using the natural dynamics 
arising from the presence of a third body. Recent work by our group gives a rigorous expla- 
nation of these phenomena by applying some techniques from dynamical systems theory to 
systems of n bodies considered three at a time.1-3 We obtain a systematic way of design- 
ing ballistic lunar transfers and, more generally, trajectories with a predetermined future 
and past, in terms of transfer from one Hills region to another. One of the examples we 
have considered is an extension of the Europa Orbiter mission4* to include an orbit around 
Ganymede. More recently, we have considered a mission in which a single spacecraft would 
orbit three of Jupiter’s planet-size moons-Callisto, Ganymede and Europa-one after the 
other, using very little fuel.8 Our approach, which we have dubbed the “Multi-Moon Or- 
biter” (MMO) , should work well with existing techniques, enhancing NASA’s trajectory 
design capabilities for missions such as the Jupiter Icy Moons Orbiter. 
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Our goal in this paper is not to construct flight-ready end-to-end trajectories, but to 
explore the orbital dynamics of spacecraft in the presence of the jovian moon system. In 
particular, we wish to determine the fuel consumption versus time of flight trade-off for the 
inter-moon transfer portion of a MMO mission. 

By approximating a spacecraft’s motion in the n + 1 body gravitational field of Jupiter 
and n of its planet-sized moons into several segments of purely three body motion-involving 
Jupiter, the i th moon, Mi, and the spacecraft-we can design a trajectory for the spacecraft 
which follows a prescribed itinerary in visiting the n moons. An advantage of this patched 
three-body approach to mission design is that that the spacecraft will orbit a moon Mi in 
a capture orbit for a desired number of circuits, escape Mi in the direction of a neighboring 
moon Mk, become ballistically captured in a capture orbit, and so on. Instead of flybys 
lasting only seconds, a scientific spacecraft can orbit several moons for any desired duration. 
Furthermore, the total velocity change (AV) necessary is much less than that necessary 
using purely two-body motion segments. 

We have found tours as low as -20 m/s vs -1500 m/s using previous  method^.^>^ In fact, 
this low AV is on the order of statistical navigation errors. The lowest energy MMO tour is 
shown in Figure 1. By using small impulsive maneuvers totaling only 22 m/s, a spacecraft 
initially injected in a jovian orbit can be directed into an elliptical capture orbit around 
Europa. Enroute, the spacecraft orbits both Callisto and Ganymede for long duration using 
a ballistic capture and escape methodology developed previously. This way of designing 
missions is called the patched three-body approzimation (PSBA) and will be elaborated upon 
further in this paper. 

Trade-off Between Fuel and Time Optimization. The dramatically low AV needed 
for the tour of Figure 1 is achieved at the expense of time-the present trajectory has a 
time of flight (TOF) of about four years, mostly spent in the inter-moon transfer phase. 
This is likely too long to be acceptable for an actual mission. With refinement, we believe 
the method could be applied to an actual mission, maintaining both a low AV for the 
tour and low accumulated radiation dose (a concern for an actual mission in the jovian 
system). Therefore, in this paper we will explore the AV vs TOF trade-off for the inter- 
moon transfer between Ganymede and Europa. What we observe is that for slightly larger 
AV, a reasonable TOF can be achieved. 

THE BUILDING BLOCKS FOR DETERMINING THE AV VS TIME OF FLIGHT 
TRADE-OFF 

In order to make this trade-off study computationally tractable, one needs to use simplified 
models. The forward-backward method in the restricted three-body problem phase space 
is used.7>9 The influence of only one moon at a time is considered. Criteria are established 
for determining when the switch from one moon’s influence to another occurs. 

Much e ~ i d e n c e l - ~  suggests that the use of invariant manifold structures related to L1 
and L2 points (e.g., “tubes”) yields fuel efficient impulsive trajectories. Using the planar 
circular restricted three-body problem as our baseline model, we will compute tubes over 
a range of three-body energies (aka, Jacobi constants). The tubes are the passageways 
leading toward or away from the vicinity of Lagrange points. The tubes have the numerically 
observed property that the larger the energy, the further the tube travels from its associated 
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Low Energy Tour of Jupiter’s Moons 
Seen in Jovicentric Inertial Frame 

Injection into 
high inclination 

orbit around Europa 

I 

Figure 1: The Multi-Moon Orbiter space mission concept for the jovian moons involves long 
duration orbits of Callisto, Ganymede, and Europa, allowing for extensive observation. Starting in an 
elliptical jovian orbit with perijove near Callisto’s orbit, the spacecraft trajectory gets successively reduced in 
jovicentric energy by resonant gravity assists with the various moons, effectively jumping to lower resonances 
at each close approach, as shown in (a). The trajectory has its jovicentric energy reduced by Callisto, 
Ganymede, and Europa, in sequence. As the orbit converges upon the orbit of Europa, it will get ballistically 
captured by Europa. Small corrections during the tour add up to a total AV of about 20 m/s, on the order 
of statistical navigation errors. At the end of the tour phase, the spacecraft is a t  a 100 km altitude periapse 
with respect to Europa. A AV of approximately 450 m/s is then needed to get into a 100 km altitude orbit 
about Europa, with an inclination of about 45’, as shown (b). 

Lagrange point in a fixed amount of time. We will use this property to find the TOF between 
Ganymede and Europa as a function of the energy in their respective three-body systems. 
These energies can be used to calculate the AV of escape from each moon under certain 
assumptions. 

First, we review the P3BA and the dynamics in the circular restricted three-body prob- 
lem. 

The Patched Three-Body Approximation (P3BA) 

The P3BA discussed by Ross, Koon, Lo, and Marsden8 considers the motion of a particle 
(or spacecraft) in the field of n bodies, considered two at a time, e.g., Jupiter and its 
i th moon, Mi. When the trajectory of a spacecraft comes close to the orbit of Mi, the 
perturbation of the spacecraft’s motion away from purely Keplerian motion about Jupiter 
is dominated by Mi. In this situation, we say that the spacecraft’s motion is well modeled 
by the Jupiter-Mi-spacecraft restricted three-body problem. 

3 



Tube Dynamics: Ballistic Capture and Escape. Stable and unstable invariant man- 
ifold tubes associated to bounded orbits around the libration points L1 and Lz are phase 
space structures that mediate motion to and from the smaller primary body (e.g., mediating 
spacecraft motion to and from Europa in the Jupiter-Europa-spacecraft system), and be- 
tween primary bodies for separate three-body systems (e.g., spacecraft motion between Eu- 
ropa and Ganymede in the Jupiter-Europa-spacecraft and the Jupiter-Ganymede-spacecraft 
systems). 

These invariant manifold tubes can be used to produce new techniques for constructing 
spacecraft trajectories with interesting characteristics. 

The design of a MMO of the jovian system is guided by two main ideas.7>8 

1. The motion of the spacecraft in the gravitational field of the three bodies Jupiter, 
Ganymede] and Europa is approximated by two segments of purely three body motion 
in the circular, restricted three-body model. The trajectory segment in the first three 
body system, Jupiter-Ganymede-spacecraft, is appropriately patched to the segment 
in the Jupiter-Europa-spacecraft three-body system. 

2. For each segment of purely three body motion, the invariant manifolds tubes of L1 and 
Lz bound orbits (including periodic orbits) leading toward or away from temporary 
capture around a moon, as in Figure 2, are used to construct an orbit with the desired 
behaviors. This initial solution is then refined to  obtain a trajectory in a more accurate 
four-body model. 

Inter-Moon Transfer. During the inter-moon transfer-where one wants to leave a moon 
and transfer to  another-the control problem becomes one of performing appropriate small 
AV’s to decrease the jovicentric orbit energy by jumping between orbital resonances with 
a moon, i.e., performing resonant gravity assists. This is illustrated in the schematic space- 
craft trajectory shown in Figure 3. 

After the spacecraft escapes from the vicinity of the outer moon, the outer moon’s 
perturbation is only significant over a small portion of the spacecraft trajectory near apojove 
( A ) .  The effect of the moon is to impart an impulse to the spacecraft] equivalent to a AV in 
the absence of the moon. The strategy to achieve consecutive gravity assists is to maneuver 
the spacecraft to pass through apojove a little behind the moon. As illustrated in Figure 3(a), 
the result is a decrease in the perijove of the spacecraft’s orbit, while the apojove remains 
(mostly) constant in inertial space due to the conservation of the three-body energy. As 
long as the spacecraft’s trajectory repeatedly targets apojove a little behind the moon, it 
will decrease its perijove once more, and so on. 

Switching Orbit. During the inter-moon transfer trajectory] there comes an arc of the 
spacecraft’s trajectory at which the spacecraft’s perturbation switches from being dominated 
by moon M I  to being dominated by a nearby moon, M2. A rocket burn maneuver need not 
be necessary to effect this switch. The set of possible “switching orbits,” which we will refer 
to as the “switching region,” is the analogue to the “sphere of influence” concept used in 
the patched-conic approximation, which guides a mission designer regarding when to switch 
the central body for the model of the spacecraft’s Keplerian motion. 
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x (rotating frame) 

(4 

Figure 2: The patched  three-body approximation.(a) The co-orbiting frame with Europa is shown, 
otherwise known as the rotating frame. The spacecraft’s motion in each Jupiter-moon-spacecraft rotating 
frame is limited to the region in white due to constant energy in that system (constant Jacobi integral). We 
work with three-body energy regimes where the region surrounding the moon’s orbit (shaded) is energetically 
forbidden to spacecraft motion. Note small opening near moon, permitting capture and escape. (b) The 
four-body system approximated as two nested three-body systems. This picture is only a schematic, as the 
spacecraft’s motion conserves the three-body energy (aka, Jacobi integral) in only one three-body system at 
a time. 

Consider again Figure 3(a). Once the spacecraft orbit comes close to grazing the orbit 
of the inner moon, the inner moon takes ‘kontrol” (has the dominant effect) and the outer 
moon no longer has much effect. The spacecraft orbit where this occurs is denoted E 
in Figures 3(a) and 3(b). The spacecraft now gets gravity assists from the inner moon at 
perijove ( P ) .  Once again, we use small maneuvers to maintain the near-resonance condition, 
i.e., pass through perijove a little ahead of the moon. This causes the apojove to  decrease at 
every close encounter with the inner moon, causing the spacecraft’s orbit to get more and 
more circular, as in Figure 3(b). When a particular resonance is reached, the spacecraft can 
then be ballistically captured by the inner moon at M2.l We note that a similar phenomenon 
has been observed in previous studies of Earth to lunar transfer trajectories. 9,10 

Resonant Structure of Phase Space. In order to obtain very low energy trajecto- 
ries like the Multi-Moon Orbiter shown in Figure 1, it is critical to consider the resonant 
structure of the phase space in the interior and exterior Hill’s regions. This is because the 
switching region between neighboring pairs of moons can only be accessed by traversing 
several subregions of a Hill’s region, otherwise known as “resonance regions,” where the res- 
onance is between the periods of the spacecraft and the moon around Jupiter, respectively. 

Early investigation into the phase space of the restricted three-body problem using 
Poincar6 maps revealed a phase space consisting of mixed regular and chaotic motion, de- 
scribed as a series of overlapping resonance region~.~. l l  Lobe dynamics provides a general 
theoretical framework, based on invariant manifold ideas from dynamical systems theory, 
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Figure 3: Inter-moon transfer via resonant gravity assists. (a) The orbits of two Jovian moons 

are shown as circles. Upon exiting the outer moon’s sphere-of-influence a t  M I ,  the spacecraft proceeds 
under third body effects onto an elliptical orbit. The spacecraft gets a gravity assist from the outer moon 
when it passes through apojove (denoted A ) .  The several flybys exhibit roughly the same spacecraft/moon 
geometry because the spacecraft orbit is in near-resonance with the moon’s orbital period and therefore 
must encounter the moon a t  about the same point in its orbit each time. Once the spacecraft orbit comes 
close to grazing the orbit of the inner moon, the inner moon takes ‘‘control.” The spacecraft orbit where 

this occurs is denoted E. (b) The spacecraft now receives gravity assists from the inner moon a t  perijove 
( P ) ,  where the near-resonance condition also applies. The spacecraft is then ballistically captured by the 
inner moon a t  Mz. 

for discussing, describing and quantifying organized structures in a mixed regular/chaotic 
phase space and determining their influence on transport. In particular, using lobe dynam- 
ics we can discover, describe, and quantify barriers, transport “alleyways,” and statistical 
quantities of transport. l2 

In other words, lobe dynamics tells us the most important spacecraft trajectories, i.e., 
the uncontrolled trajectories which traverse a set of subregions in the shortest time. Con- 
sequently, it should prove useful for designing low energy spacecraft trajectories. In this 
study, we will use tube dynamics along with lobe dynamics to design orbits which quickly 
traverse the space between moons during the inter-moon transfer phase. Essentially, the 
lobes guide pieces of the tube across resonances. We can numerically determine the fastest 
trajectory from an initial region of phase space (e.g., orbits which have just escaped from 
moon Mi) to a target region (e.g., orbits which will soon be captured by a neighboring moon 
M k ) .  This yields the AV vs. TOF trade-off for the inter-moon transfer between Ganymede 
and Europa. 
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NUMERICAL RESULTS FOR THE AV VS TIME OF FLIGHT TRADE-OFF 

Method Description. In order to do a trade study of transfers between orbits around 
Ganymede and Europa, we can initially consider an impulsive transfer from a Ganymede 
L1 orbit (denoted GaL1) to a Europa L2 orbit ( E u L ~ ) .  If we find such a transfer, we know 
that a transfer between orbits around Ganymede and Europa is nearby in phase space. We 
can break the transfer into two pieces. 

1. In the first piece, we consider the transfer along the unstable manifold tube of a 
GaL1, which we denote U(GaL1).” The set of all GaLl’s is parameterized by the 
energy one of our tunable parameters. For each E G ~ ,  one can compute the 
GaLl and U(GaL1). One can determine the trajectory within U(GaL1) which takes 
the least time to transfer to a perijove distance rP,  equal to the approximate radial 
distance from Jupiter of Europa’s L2 point. In Figure 4, we illustrate the method 
for numerically constructing natural trajectory arcs which will switch control from 
Ganymede to Europa. The time of flight of this portion of the inter-moon transfer 
trajectory, T G ~ ,  is seen to be a function of E G ~ .  

Initial condition for orbit 
which switches to Europa control 

Perijove = radius of Europa’s L2 

Figure 4: Numerical construction of natural trajectory arcs which will switch control from 
Ganymede to Europa. Suppose we want to find trajectories which begin near Ganymede (G in the figure) 
and escape toward Europa, finally getting naturally captured by Europa. The first step is to numerically 
construct the Ganymede L2 tube heading toward Europa, or U(GaL1) in the terminology of the text. We 
take a Poincarh section, C, at the position shown in (a). We show only two crossings of C, but there are an 
infinite number. We also show the radial distance of Europa’s Lz, labeled EL2. In (b), we show the initial 
cross-section of the tube on C, labeled 1. The successive crossings are labeled 2 ,  3, . . .. In this schematic, we 
also show the line corresponding to a perijove equal to the radial distance of Europa’s La. Any spacecraft 
trajectory in the Jupiter-Ganymede-spacecraft system which crosses this line can be assumed to “switch” 
control to Europa, meaning the Jupiter-Europa-spacecraft system becomes a good approximation. 

aU(GaLl) has two branches, but we consider the one heading initially in the direction of Europa’s orbit. 
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2 For the second piece, we consider the transfer along the stable manifold tube of a 
E u L ~ ,  which we denote S ( E U L Z ) . ~  The set of all EUL~’S is parameterized by the 
energy E E ~ ,  one of our tunable parameters. For each E E ~ ,  one can compute the E U L ~  
and s ( E u ~ 2 ) .  One can determine the trajectory within S (EUL~)  which takes the least 
time to transfer to an apojove distance ra, equal to the approximate radial distance 
from Jupiter of Ganymede’s L1 point. The time of flight of this trajectory, T E ~ ,  is 
seen to be a function of EE”. 

The sum, TOF = T G ~ + T E ~ ,  is an approximate inter-moon transfer time. The total fuel 
expenditure, AKot, needed to perform the transfer can be estimated as follows. We assume 
only two impulsive maneuvers, AVGa and AI&,. 

AVG, = the AV to escape from the scientific orbit around Ganymede can be estimated 
from the difference between the energy of the transfer away from Ganymede, E G ~  and 
the energy of the scientific orbit at Ganymede, EGaO. 

AVj, = the AV to enter the scientific orbit around Europa can be estimated from the 
and the energy of difference between the energy of the transfer toward Europa, 

the scientific orbit at Europa, EE,O. 

The total fuel expenditure is the sum, A&,, = AVG, + AVE,. We suppose that E G ~ O  
and EjUo are given. We can then perform this method for a range of tunable parameters 
(EG, and to determine the fuel consumption (Aho,) versus time of flight (TOF) 
trade-off. 

Computing the Delta-V’s. We assume that portions of each tube quickly reach a peri- 
apse of 100 km altitude above each moon, and that the solutions which do this are close in 
phase space to the transfer solutions found, assumptions justified by earlier work. Given 
these assumptions, we can estimate AVG, and A&, as follows. In the rotating frame of a 
.Jupiter-moon-spacecraft three-body system, a spacecraft with a velocity magnitude ‘u has 
a three-body energy 

where the effective potential, a function of position, is 

1 1 - P  P u = --r’ - - - - 
2 rJ r M 7  

where p is the mass ratio mJ:E,, T J  is the spacecraft’s distance from Jupiter’s center, 7-M 
the distance from the moon’s center, and T the distance from the Jupiter-moon center of 
mass, which is very close to Jupiter. At a distance of 100 km altitude above the moon, we 
are very close to the moon. Therefore, r x rJ  M 1, and we can approximate Eq. ( 2 )  as 

b S ( E u ~ z )  has two branches, but we consider the one heading initially in the direction of Ganymede’s 
orbit. 
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Using Eq. (l), the velocity can then be approximated as 

Therefore, the approximate AV to go between energies El and E2 while at the same distance 
TM close to the moon is 

We can use the above equation to compute AVGa given El = EGa and Ez = EGaO. 
For this study, we take E G a o  to be the energy of L1 in the Jupiter-Ganymede-spacecraft 
system. This corresponds to a bound elliptical orbit around Ganymede which is just below 
the energy threshold of escape. We can perform similar calculations for AVE,. 

The result of tabulating A&,, = AVGa + AVj, for each TOF = T G ~  + T E ~  for several 
cases is given in Figure 5(a). We find a near linear relationship between AV and time 
of flight. The data for the Europa Orbiter endgame from Ludwinski et a1.5 is shown for 
comparison and labeled EO. For this study we looked at a range of energies in both three- 
body systems. The highest energy (and lowest TOF) transfer we computed is shown in 

6oo t . Eo i 

01 I 
50 100 150 200 250 300 350 400 

Time of Flight (days) 

(4 
I __.' 

_/-- -.._____._..--- -._ 

Figure 5: Fuel consumption versus flight time trade-off for the inter-moon transfer phase 
of a multi-moon orbiter mission. (a) The AV vs time of flight plot for several transfer trajectories 
from Ganymede to Europa are shown. For the several cases run, we find a near linear relationship between 
AV and time of flight. The data for the Europa Orbiter endgame from Ludwinski et aL5 is shown for 
comparison and labeled EO. For this study we looked at a range of energies in both three-body systems. 
The highest energy (and lowest TOF) transfer we computed is shown in (b) in inertial coordinates, where 
G labels Ganymede's orbit and E labels Europa's. This transfer had a TOF of 227 days and a AV of 211 
m/s. Beyond this lower T O F  limit to our computations, we speculate that the linearity will continue for a 
while then the curve will bend upward, joining the branch of patched-conic solutions, as in Figure 9 of Ross 
et a].' 
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(b) in inertial coordinates, where G labels Ganymede’s orbit and E labels Europa’s. This 
transfer had a TOF of 227 days and a AT/ of 211 m/s. Beyond this lower TOF limit to our 
computations, we speculate that the linearity will continue for a while then the curve will 
bend upward, joining the branch of patched-conic solutions, as in Figure 9 of Ross et al. . 

FUTURE WORK 

In addition to exploring the important compromise between time and fuel optimization, 
future studies will investigate the following. 

The  use of low-thrust continuous propulsion and optimal control: The maturity of 
current ion engine technology has brought low thrust controls into the practical world 
of mission design in industry and in NASA (cf. the Deep Space I mission).  Similar 
work is being done at the European Space Agency as well. Therefore, low thrust 
trajectory control is of great interest to current mission design. Our current work 
on the MMO considers several small impulsive burns. But an actual mission may 
want to save on spacecraft weight by using low thrust propulsion. How could our 
method be modified to incorporate low-thrust? Theoretically, one of the most favored 
approaches is to use optimal control in generating low thrust trajectories. We have 
found that a good first guess is often vital for numerical optimization algorithms, 
especially for an n-body problem, which is numerically very sensitive. Dynamical 
systems theory can provide geometrical insight into the structure of the problem and 
even good approximate solutions, as we found in an earlier paper. There is evidence 
that optimal trajectories using multiple low thrust burns are “geometrically similar” to 
impulsive solutions. l o l l 5  Thus, multiple burn impulsive trajectories that we construct 
for the MMO can be good first guesses for an optimization scheme which uses low 
thrust propulsion to produce a fuel efficient mission. 
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Radiation efiects: The current model does not include radiation effects. Evidence 
suggests it is desirable to keep the spacecraft outside of a 12 RJ from Jupiter, in 
which the radiation may destroy sensitive electronics on board the spacecraft. The 
orbit of Europa is located at 10 R J ,  so the transfer between Ganymede and Europa 
must minimize the time spent near its perijove for the final resonant gravity assists 
that lead to a capture by Europa.‘ One needs to determine what is the best way 
to minimize radiation effects and still achieve a very low thrust transfer. On the 
other hand, the strong magnetic field of Jupiter may make the use of tethers a viable 
propulsion or power generation option. 

e More control over operational orbits for scientific observation: For a mission to Eu- 
ropa and the other moons, some control strategy is necessary to maximize desirable 
scientific observation and avoid collisions with the moon surface or escape from the 
moon’s vicinity. Exotic strategies might be considered. For instance, what is the 
optimal thrusting strategy during the ballistic capture approach in order to achieve 
an operational orbit which maximizes observation time over an interesting portion 
of a moon’s surface? Also, what is the optimal station-keeping strategy for elliptical 

‘The perijove for this portion of the tour is just outside the radial distance of Europa’s Lz point, which 
is located slightly within 12 RJ .  
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operational orbits? In the short term, it may be desirable to target particular stable 
operational orbits, but still save fuel using third body effects. l3>l6 

Autonomous  on-board navigation and control: A trajectory of this type, which is sensi- 
tive to  AV errors and modeling errors, will need to have the capability of autonomous 
on-board navigation and control. The first step toward this which one can look at 
is the trajectory correction maneuver problem, in which errors are modeled and a 
control algorithm corrects for those errors. l4 
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