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Abstruct- We consider the problem of state estimation for 
nonlinear time-varying systems whose nonlinearities satisfy 
an incremental quadratic inequality. Observers are presented 
which guarantee that the state estimation error exponentially 
converges to zero. Observer design is reduced to solving linear 
matrix inequalities for the observer gain matrices. Results are 
illustrated by application to a simple model of an underwater 
vehicle. 

I. INTRODUCTION 
A fundamental problem in system analysis and control 

design is that of determining the state of a system from 
its measured output. Many solutions to this problem use 
an asymptotic observer (or state estimator) that produces 
an estimate of the system state which asymptotically ap- 
proaches the system state. Typical observers for linear 
systems consist of a copy of the system dynamics along with 
a linear correction term based on the output error, that is, 
the difference between the measured output and its estimate 
based on the estimated state [12], [6] .  

References [ 3 ]  and [4] consider a class of nonlinear 
systems whose nonlinearities have bounded derivatives. 
They present asymptotic observers which involve a copy of 
the system dynamics and two correction terms based on the 
output error; one term is the usual linear correction term, 
while the other term (called the nonlinear injection term) 
enters into the nonlinear element in the observer. Some 
other results on observers for nonlinear systems can also 
be found in [ 101 and [ 131. 

In this paper, we consider nonlinear time-varying systems 
whose nonlinearities satisfy an incremental quadratic in- 
equality. This inequality is characterized by a set 9d of mul- 
tiplier matrices. The nonlinearities considered include many 
of the common nonlinearities including those considered in 
[ 3 ]  and [4]. Section V exhibits some of the nonlinearities 
under consideration along with their multiplier matrices. 
For these systems, we present observers whose structure is 
inspired by [ 3 ]  and [4].  These observers are characterized by 
two gain matrices: the gain matrix L for the linear correction 
term and the gain matrix L, for the nonlinear injection 
term. Initially, we consider L, fixed (for example zero) and 
convert the problem of determining L into that of solving 
linear matrix inequalities. Such inequalities can be readily 
treated using the LMI toolbox in MATLAB [8]. 
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We also consider the problem of simultaneously comput- 
ing L and L,. By imposing a specific condition on the set 
M of multiplier matrices describing the nonlinearities, we 
also convert the problem of simultaneously determining L 
and L, into that of solving linear matrix inequalities. 

All of our results are based on analysis on the state esti- 
mation error dynamics using quadratic Lyapunov functions. 
To illustrate our results, we apply the proposed observers 
to estimate the state of a simple model of an underwater 
vehicle from [l  11. 

11. SYSTEM DESCRIPTION 

We consider nonlinearhime-varying systems described by 

X = Ax+Bu+B,p(t,x,u) 

y = Cx+Du+Dpp(t,x,u) (1) 

where x ( t )  E IR" is the state, u( t )  E IRm is the control 
input, y( t )  E IR' is the measured output and t E IR is the 
time variable. All the nonlinearhime-varying elements in 
the system are lumped into the term p( t ,x ,u)  E R ' p .  We 
suppose that 

p ( t , x , u )  = y ~ ( t , z )  where z = Cqx+Dqu ( 2 )  

and y~ is a piecewise continuous function o f t  and a con- 
tinuous function of z E IR'q. The matrices A ,  B,  B,, C, D, D, 
and C,,D, are constant and of appropriate dimensions. 

Our characterization of w is based on a set 9d of sym- 
metric matrices which we refer to as multiplier matrices. 
Specifically, for all M E 94, the following incremental 
quadratic inequality holds for all t E IR and zl ,z2 E IR'q: 

( q ( t , z 2 ) - q ( t A )  ) iM(  d t , z 2 ) - q ( t , z l )  ) > 0 
yJ(t72) - y J ( t , Z l )  y J ( t 7 2 )  -yJ(t,z1) 

( 3 )  

q ( t , z )  = z+DqpyJ(t,z) ' (4) 
where 

Basically, the constant matrix D, and 94 provide a char- 
acterization of y~ in a incremental sense. Section V exhibits 
some of the nonlinearities under consideration along with 
their multiplier matrices. 

111. OBSERVERS 
We propose the following observers to provide an esti- 

mate f of the state x of the system described by (1): 

f = A f  +Bu + BPj? + L@ - y )  

p = Cf+DU+DPj? ( 5 )  



where 

fi = v(t, .?+L,,@-y)) and i= Cq2+Dqu. (6) 

Here, L is the gain for the linear correction term and L, is 
the gain for the nonlinear injection term, which was also 
introduced in [4]. The nonlinear injection term results in 
additional flexibility in the design. As an example of the 
usefulness of this term, suppose z = y.  Then, L, = -I yields 
,?+L,@ - y )  = z and fi = v(t,z); hence we have an exact 
copy of the nonlinearity in the observer. 

In the observer description above, we have 

fi = v(t, t+L,(Ci+Du-y) + L,Dpfi). 

When LnDp # 0, this is an implicit equation for fi. So, we 
assume that there is a continuous function Q such that for 
all t and q, the equation 

fi = ~ ( t ,  q +LnDpfi) (7) 

is uniquely solved by fi = Q(t,q). Then, fi is uniquely given 
by 

fi = $(t , i+L,(Ci+D~-y)) .  (8) 

The next section provides some sufficient conditions which 
guarantee the existence of Q. Introducing the the state 
estimation error, 

e : = x - x ,  (9) 

we have 

j v ( t , z +  (Cq +LnC)e+LnDp(fi-p)) 
= $(t ,z+ (Cq +L,C)e-LnDpp) (10) 

e = ( A  + LC)e+ (B, + LD,)Sp(t,e) (1 1)  

&p(t ,e)  = $ ( t , z ( t )  + (cq +LnC)e-LnDp\V(t,Z(t))) - ~ ( t , z ( t ) ) .  

It follows from (1 0) that Sp satisfies 

and the error dynamics are described by 

where 

Sp = v ( t , z +  (Cq +LnC)e+L,DpGp) - v(t ,z) .  

Let 

W t , e )  = (Cq+LnC)e+ (Dqp +LnDp)Sp(t,e) 

Then, using (3 )  with z1 = z and 22 = z + (C + LnCq)e + 
LnDpSp we obtain that for all t and e, 

The following result yields conditions for observer gains 
which result in exponentially decaying estimation errors. 

Theorem 1: Consider a system described by (1)-(2) and 
satisfying (3) with a set M of matrices. Suppose that there 
exist matrices P = PT > 0, L, L, and M E  M satisfying 
matrix inequality ( 1  3) (on the next page) for some a >  0. 
Also suppose that there is a continuous function $ such that 

fi = $(t,q) uniquely solves equation (7). Consider any input 
u( . )  and initial condition x ( t 0 )  =no such that system (1) 
has a solution for all t 2 to .  Then, the state estimation error 
e = P - x  corresponding to observer (5) decays exponentially 
to zero with rate a. 

The error dynamics given in (11) can be 
described by 

Proof 

e =  A,e+B,Sp(t,e) 
6q = C,e+D,Sp(t,e), 

where 

(14) 
A,:=A+LC, 
C, := Cq +L,C, 

B, := Bp i- LD, , 
D, := Dqp +L,Dp , 

and Sp satisfies inequality (12) for all t ,  e, and M E M. 
Inequality (13) now simplifies to 

Pre- and post-multiplying both sides of the above inequality 
by [eT 8pT] and its transpose and using condition (12) we 
obtain that 

eTP(A,e+B,Gp(t,e)) 5 -aeTPe for all t ,  e. 

This shows that the error dynamics are quadratically stable 
about zero with rate a; (see [7], [2] and/or [SI for a 
definition of quadratic stability). This implies that the error 

The following corollary yields an observer design proce- 
dure for a given L,. 

Corollary 1: Consider a system described by (1)-(2) and 
satisfying (3) with a set 94 of matrices. For a given L,, 
suppose that there exist matrices P = PT > 0, R and M E  M 
such that the following matrix inequality holds: 

decays exponentially to zero with rate a. 

PA + A T P +  RC+CTRT + 2 d  PB, + RD, 
B , T P + D , T R ~  

where C, and D, are given in (14) and let 

L = P - ~ R .  (16) 

Also suppose that there is a continuous function $ such 
that fi = $ ( t , q )  solves equation (7). Consider any input u ( . )  
and initial condition x(t0) = xo such that system (1) has a 
solution for all t 2 to. Then the state estimation error for 
the observer (5) decays exponentially to zero with a rate a. 

Remark I :  Note that, for a fixed a and L,, inequality 
(15) is an LMI (linear matrix inequality) in the variables P, 
R, and M. 

A .  On the Existence of a Solution to Equation (7) 
As mentioned in the previous section, if LnDp # 0, then 

we need to be able to solve equation (7) for j to implement 
the observer. This equation defines an implicit relation 
for j? in terms o f t  and q. Here q = I+Ln(C2+Du-y). 
The following lemma provides a sufficient condition which 



guarantees that, for each t and q, equation (7) has a solution 
j? = Cp(t,q), where Cp is continuous. Since the proof of this 
lemma is rather long, it is not presented here. See [ l ]  for 
the proof. 

Lemma I :  Suppose that w satisfies (3) for all t ,  z1,z2 and 
M E  M. Given L,, suppose there are matrices M E !M and 
Q and a scalar p > 0 such that 

Then, there is a continuous function Cp such that j? = Cp(t,q) 
solves equation (7). 

Reinark 2: When LnDp # 0, Lemma 1 suggests that we 
can design an observer for a given L, by simultaneously 
solving the LMIs (15) and (17) for P, M, R, Q and p. Then 
L = P-'R. Consequently we obtain a well defined observer 
to estimate the states, because equation (7) has a continuous 
solution. 

Iv. A CONDITION FOR SIMULTANEOUS DESIGN OF L 
AND L, VIA LMIS 

The previous section contains an observer design pro- 
cedure where the observer gain L is designed for a fixed 
L,. However, the simultaneous design of L and L, is not 
addressed. The following condition, which is satisfied by 
many common nonlinearities (see Section V), allows for 
the simultaneous design of L and L,. 

Condition I :  There exist a nonsingular matrix T and a 
set of matrix pairs ( X ,  Y )  with Y E I R m p  Xmp such that 
X T  = X >  O,YT = Y 2 0 and the matrix 

is in M. In addition, f i 2  + &DqP is nonsingular where 

and f i 2  E I R m p  x m p .  

A. A Transformation 
Suppose Condition 1 holds and note that 

T ( ) = ( 51z+r12P ) 
fi1z + r22p 

where 

r12=q2+T11Dqp, ,  and r22=T22+fi1Dqp. 

and q = z+  D,p. Now introduce the transformed nonlinear 
term p defined by 

:= T21z+ r22p. (20) 

Since by assumption, r22 is nonsingular, we have 

p = -rG1fi1Z+r; .p;  (21) 

hence TI 1z + r12p = Z + bqpF where 

z = c z ,  z = ~ , ~ - r ~ ~ r ; ~ f i ~ ,  bqP=rl2r;I. (22) 

We now show that that E is invertible. Note that 

(F,: :::)=( F;: TI2 f i z + f i ~ D ~ , ) = ~ (  + TIID,, 0 I D,P I ) 
Since the two matrices on the righthandside of the second 
equality are invertible, the matrix on the lefthandside of 
the first equality is invertible. Since r22 is assumed to be 
invertible, by using the matrix inversion lemma [9], [14], the 
first matrix above is invertible if and only if the following 
Schur complement of the matrix is invertible: 

T~~ -rI2r;;fi1 =x. 
This implies that C is invertible. Consequently, z = C-'? 
and 

@(t,.,.) = q( t , z )  := f i 1 ~ - 1 ~ + r 2 2 ~ ( t , ~ - 1 ~ ) .  (23) 

Letting 
4"(t ,Z) =Z+bqpi$(t ,2)  

we obtain that 

1 ,  T (  W 7 2 )  -w( t , z1)  > = (  W,&) - V(t,,fl) 

B(t,52)-B(t,&) q(t,z2) -q(t ,z1) 

Hence satisfaction of inequality (3) by w implies that the 
transformed nonlinear h c t i o n  q satisfies 

Now, using the transformed term 9, system (1) is described 
by 

x = Ax+Bu+B,ip(t,Z) 
y = Cx+Butbp . j r ( t , z )  
z = Cqx+bqu (25) 

where @ satisfies (24) and 



B. Observer for the Transformed System 

ing observers for the transformed system (25): 
Based upon the previous section, we propose the follow- 

i = Ai+Bu+BpB'+L(j-y) (27) 
p = &+Bu+BpB' 

h = eq i+Bqu  
f i  = \Tr(t, h+Ln(j-y)) 

In the observer description we have, 

@ = P( t ,  f+L,(&+Du-y) +L,bpB'). 

r j  = \Tr(t, 11 +Lnbprj) 

So, when Lnbp # 0, we again assume that there is a 
continuous fimction @ such that for all t and q, the equation 

(28) 

is uniquely solved by j = $( t ,q ) .  Then, 

@ = $(t,h+L,(&+bu-y)). (29) 

Now, we can present the main result of this section, which 
is a corollary to Theorem 1. 

Corollary 2: Consider a system described by (1)-(2) and 
satisfying (3) with a set %f of matrices which satisfy 
Condition 1. Suppose that there exist matrices P = PT > 0, 
R1, R2 and ( X ,  Y )  E N which satisfy (30) (on the next page) 
and let 

L=P-'R1, L,=X-'R2. (31) 
Also suppose that there is a continuous function @ such that 
@ = @(t ,q)  solves equation (28). Consider any input u( . )  and 
initial condition x( t0)  = xo such that system (1) has a well 
defined solution for all t 2 to. Then, the state estimation 
error, e = P - x, decays exponentially to zero with a rate of 

Proof: Substitute (31) into inequality (30) and apply 
a. 

a Schur complement result [5] to obtain 

where e, := Eq + L,C and 8, := 8, +LnDP. The result now 
follows by applying Theorem 1 to the transformed system. 

w 
Remark 3: Note that, for a fixed a , inequality (30) is an 

LMI (linear matrix inequality) in the variables F', R1, R2, X 
and Y .  

When L n b p  # 0, the following corollary of Lemma 1 
presents an LMI which guarantees a continuous solution to 
equation (28) for @ (see [l] for a proof). 

Corollary 3: Suppose that \Tr satisfies (24) for all t,zI ,z2 
and (X, Y )  E N. Given L,, suppose that there are matrices 
(X, Y )  E N, R2, Q and and a scalar p > 0 such that, 

1 0  and R2=XLn. 

(32) 

-Q-QT+pI  Q CiRT 

R2bp X b q p  -X 

Then there is a continuous function @ such that @ = @(t ,q )  
satisfies (28). 

Remark 4: When LnBp # 0, Corollary 3 tells that we 
can design the observer gains L and L, by simultaneously 
solving LMI's (30) and (32) for P, R1, R2 ,X,  Y ,  Q and p. 
Then L=P-'Rl andLn=X-'R2. 

v. SOME CLASSES OF NONLINEARITIES SATISFYING (3) 
In this section, we discuss some typical nonlinearities 

satisfying (3). We also present additional conditions under 
which these nonlinearities satisfy Condition 1. 

A .  Incrementally Sector Bounded Nonlinearities 

z1, z2, satisfy 
Here we consider nonlinearities which, for all tl , t2, and 

(6y~-Kl?iq)'X(K2?iq-6y~) 2 0  for all X E X ,  (33) 

where 

6 y r : = U l ( t 2 , z 2 ) - - ( t l , Z I ) ,  6q:=6z+Dqp6yr, 6z:=z2-z1, (34) 

X is a set of symmetric positive definite matrices and 
K1 , K2 are fixed matrices. Here, without loss of generality, 
we assume that the set X is invariant under multiplication 
by a positive number. It readily follows from (33) that a 
set M of multiplier matrices for the nonlinearities under 
consideration is given by 

To satisfy Condition 1, suppose that there exists a pos- 
itive scalar o such that SI - os2 is nonsingular where 
SI :=. K2,Dqp - I  and S2 := I - KIDqp. One can verify by 
substitution that the following equality holds 

where 

-&K2-fiK1 --&I+&I 
K2 + o K ~  -I-OI 

T =  ( 
Here r22 = SI - os2 is nonsingular. Therefore, Condition 1 
is satisfied with the matrix T defined above and 

When q and p are scalars, one can always choose a 
positive scalar 0 such that SI -os2 is nonzero. To prove 
this claim, note that if S1 - os2 is zero for all o > 0 then, 
SI = S2 = 0. In this case, KI = K2 = 1 /Dqp and 6y1= K6q 
where K := K1 = K2. Using 6q = 6 z + D q p 6 ~  and 6y~=  K6q, 
we have 6z = ( 1  - DqpK)6q = 0 .  However, 6z should be 
arbitrary; hence we cannot have S1 = S2 = 0. Consequently, 
Condition 1 is always satisfied by M in the scalar case. 

As a specific example of a nonlinearity under consider- 
ation, consider a globally Lipschitz nonlinearity which sat- 
isfies 1)6y~ll 5 yll6qll for some y> 0. In this case, inequality 
(33) holds with K1 = -yI, K2 = yI and X = {W : h > 0) .  



B. Incrementally Positive Real Nonlinearities 

This class of nonlinearities is described by a set X of 
symmetric positive definite matrices X such that for all tl , t2 
and a , z 2 ,  

6qTX6yr 2 o for all x E X ,  (35) 

where Sg and 6y are as defined in (34). It is clear from (35) 
that, without loss of generality, we can assume that the set X 
of matrices is invariant under multiplication by a positive 
scalar. Note that nondecreasing nonlineanties satisfy (35) 
with X = {W : h > 0 ) .  It readily follows from (35) that a 
set M of multiplier matrices for the nonlinearities under 
consideration is given by 

M = { ( ;  ;) : , E X >  

To satisfy Condition 1 choose any scalar o > 0 such that 
D ,  - GI is nonsingular. Then, we can readily show that 

Consequently, if we let 

then r22 = D, - ol is nonsingular and Condition 1 holds. 

C. Nonlinearities with Polytopic Parameterizations 

These nonlinearities are assumed to satisfy 

6yr = Q(s)6q (36) 

where 6yr and 6q are defined in (34), s := (tl,t2,zI ,z2) and 

n(s) E Co { Q 1 ,  . . . , QV) for all s , 

that is, for any s, n(s )  = xi=lhkRk,  where h k  2 0 and 

Since 6yr = Q(s)6q, a symmetric matrix M satisfies (3) 
hk = 1. 

if 

Let 

where partitioning is in accordance with (6q,6yr). Then the 
above inequalities can be expressed as 

Consider now those matrices M which satisfy M22 5 0. 
When Dqp = 0, we need only consider this case. With M22 5 
0, the above inequalities can be shown to be equivalent to: 

MI1 +M12nk+n[& +n[M22& 2 0 for k =  1, .  . . , V .  

(37) 
Thus, the set M of symmetric matrices M which satisfy 

( A k ) ' M (  A k ) 2 0  f o r k = l ,  ..., v andM2250,  

(38) 
is a set of multipliers matrices. 

The above set of multiplier matrices does not necessarily 
satisfy Condition 1 with a single transformation T .  To 
obtain a set satisfying Condition 1, choose any nonsingular 
matrix T and consider multiplier matrices of the form given 
in (18) where X and Y are symmetric matrices with X > 0 
and Y 2 0. A matrix Mof  this structure satisfies inequalities 
(37) if and only if X and Y satisfy 

TAXTl2 -T&YT22 5 0 .  (39) 

Then, provided 5 2  + EIDqp is invertible, Condition 1 is 
satisfied with 

N = { ( X , Y ) : X T = X > O  a n d Y T = Y L O  satisfy (39)).  

Once T is chosen, (39) is a set of linear matrix inequal- 
ities in X and Y. However, the choice of T to yield a large 
subset of multipliers in some sense is not clear. Therefore, T 
is treated as a design parameter at this point. For example, 
the simple choice of T = I satisfies Condition 1 with N 
defined by 

N =  { ( X , Y )  : X T  =X> 0 and Y T  = Y 2 0 satisfy (40)) 

where 
x - f l i Y f i k 2 0  f o r k =  1 ,  . . . ,  V .  (40) 

VI. AN EXAMPLE: UNDERWATER VEHICLE 
In this section we consider a simple model of an underwa- 

ter vehicle dynamics. This example is taken from [ 1 1 3  where 
a similar objective of designing observers is considered in 
a different framework. A simplified model of the vehicle is 
given by 

$1 = -36i)&i1+u 
$2 = illill- W 2 1 + 2 I ,  

where $1 is propeller angle, $2 is vehicle position and u is 
the torque input to the propeller. It is assumed that we can 
only measure $1 and $ 2 .  The angular velocity 41 of propeller 
and the speed $2 of the vehicle will be estimated using an 



observer. In this model, $1 141 1 represents the propeller thrust 
and 10&1&1 represents the hydraulic e a g  on the vehicle. 

Introducing the state x = (@!, 41, @?, @?), and the output 
v =  (41,@2),, and letting P =  (@~I$~I,$QI@~I), we can write 
this system in state space form (1) with 

A = ( !  0 1 0 0  8 8 y ) ,  .=(I), B p = (  -1 1) 0 0 0 0  -10 

C ’ ( 0  1 0 0 0  0 1 O ) >  . = ( S ) 1  4 = ( S  S )  
With z = (x2,x4), the nonlinear term is described by (2) 
where 

Note that the nonlinear function given by f ( v )  = vJvI is a 
nondecreasing function. Considering Dqp = 0, the nonlinear 
term here is an incrementally positive real nonlinearity 
satisfying (35) with X being the set of matrices X of the 
form 

Therefore, we can design an observer using the results in 
Corollary 2. Solving the linear matrix inequalities using the 
LMI toolbox in MATLAB [8], the observer gains obtained 
for a = 4 are 

L =  ( -0.0039 -19.0395 ) ’ Ln= ( -0.3196 -13.0741 

-9.4678 -0.0134 
-21.6510 0.3072 -4.4758 0.0189 ) 
-0.2699 -21 1.0569 

A two second simulation was carried out with ini- 
tial state x(0) = (0,  0, 0, 5), initial state estimate, f(0) = 
(0,4,0, -lo), and control input 

5 f o r O < t < l  
-10 for 1 5 t < 2  . u(t )  = 

In these simulations, dotted lines represent 
estimate which converged to the vehicle state in 
0.5 seconds. 

VII. CONCLUSIONS 
We consider the problem of state estimation 

the state 
less than 

for non- 
linear time-varying systems whose nonlinearities satisfy 
an incremental quadratic inequality. We demonstrate that 
many common nodineadtime-varying terms satisfy such 
an inequality. We present observers which guarantee that 
the resulting state estimation error exponentially converges 
to zero. Observer design involves solving linear matrix 
inequalities (LMIs) for the observer gain matrices. These 
LMIs can be efficiently treated using commercially avail- 
able software. Results are illustrated by application to a 
simple model of an underwater vehicle. 

The results of this paper will be useful in obtaining 
observer based output feedback controllers for systems 
with nonlinear/time-varying terms satisfying an incremental 
quadratic inequality. 
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Fig. 1. Estimating the state of an underwater vehicle 
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