
A Mini Grand Challenge:

Build a Verifiable Filesystem

Gerard J. Holzmann Rajeev Joshi

Laboratory for Reliable Software∗

NASA/JPL Pasadena, CA 91109, USA

A mini grand challenge

The verification grand challenge proposed by Hoare [1] sets the stage for the program veri-
fication community to embark upon a collaborative project to build verifiable software. At
a recent workshop in Menlo Park, there seemed to be a consensus that a key ingredient of
such a collaborative effort would be the development of a repository of benchmark prob-
lems, complete with design artifacts such as specifications, models and implementations. A
suggestion that seemed to garner some approval was to embark on a shorter-term “mini
challenge”, i.e., the development of a specific piece of verified software that would serve as
the basis for such a repository, helping to generate benchmark problems, reach agreements
on formats, and initiate new collaborations.

An ideal candidate for such a mini challenge should have several key features: (a) it
should be of sufficient complexity that traditional methods such as testing are inadequate,
(b) it should be of sufficient simplicity that specification, design and verification could
be completed in a relatively short time, say, 2-3 years, and (c) it should be of sufficient
importance that its correctness is crucial, so that the verification effort would have an
impact outside the verification community.

At the Menlo Park workshop, some participants (notably Amir Pnueli) suggested that a
suitable candidate would be the verification of the kernel1 of the Linux operating system [2].
While the task of verifying the Linux kernel certainly meets conditions (a) and (c) above, it
does not meet condition (b). In fact, just the task of writing a formal specification for the
kernel would be a challenge to finish within 2 years; doing so while also reaching agreement
on formats and developing international collaborations seems difficult.

Instead, we propose that a more suitable candidate for such a mini challenge would
be the development of a verifiable filesystem. There are several reasons why developing
a filesystem is more attractive than an operating system kernel. Firstly, most modern
filesystems have a clean, well-defined interface, conforming to the POSIX standard [3],
which has been in use for many years. Given that this interface is now fairly stable, the
task of writing a formal specification can be completed in a reasonably short time. Secondly,

∗The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration.

1Actually, Pnueli suggested verifying “Linux”; we assume he meant the Linux kernel.

1



since the underlying data structures and algorithms used in filesystem design are very well
understood, a verifiable filesystem could conceivably be written from scratch; alternatively,
one could start with any of several existing filesystems and attempt to verify them. Thus
any of a wide range of verification techniques could usefully be applied to the problem.
Thirdly, even though filesystems have been studied extensively, they are complex enough
that ensuring reliability in the presence of concurrent accesses and unexpected power failures
is a nontrivial problem. Indeed, recent work shows that even popular filesystems that are
in widespread use have serious bugs with devastating consequences, such as deletion of the
system root directory [4]. Finally, since almost all our data is now managed by a filesystem,
its correctness is of great importantance, both from the standpoint of reliability and security.

At the NASA/JPL Laboratory for Reliable Software (LaRS), we are developing tools
and technologies that allow reliable software development to be less reliant on following
traditional ad-hoc processes and more reliant on automated verification tools. As part of
this effort, we are currently engaged in a pilot project to build a reliable filesystem for
flash memory, for use as nonvolatile storage on board future missions. In the following
section, we describe our plans for specifying, designing and implementing such a reliable
flash filesystem.

A reliable flash filesystem for flight software

Flash memory has recently become a popular choice for use on spacecraft as nonvolatile
storage for engineering and data products, since it has no moving parts, consumes low
power and is easily available. There are two common types of flash memory, NAND flash
and NOR flash [5]. While NOR flash is more reliable and easier to program, it has poor
write and erase times, and is therefore less attractive as a storage device. While it is possible
to design flight software to use flash memory directly as a raw device, it is typically much
easier to write robust flight software on top of a filesystem layer that provides common file
operations for creating, reading and writing files and directories. In fact, the flight software
on several recent NASA missions, such as the Mars Exploration Rovers and Deep Impact,
uses a filesystem to access flash memory.

Building a robust filesystem, however, is a nontrivial task. Performance dictates the
use of buffers and caches, which increase the danger of inconsistencies in the presence of
concurrent thread accesses and unexpected power failures. To add to the challenge, writing
a reliable filesystem for flash memory, especially NAND flash memory, can be a challenge,
as several issues need to be addressed such as arbitrary bit flips, blocks that unexpectedly
become “bad” (i.e., permanently unusable), and limited block lifetimes (block usually be-
come bad after they have been erased a certain number of times, typically 100,000). In
addition, a flash filesystem written for use on a spacecraft must obey additional constraints,
such as bounds on the amount of memory that can be used.

The goal of our pilot project is to build a robust flash filesystem by following a design
methodology that is based on documenting as much as possible in a machine readable
form that is amenable to automatic verification. Thus the intent is not only to build a
working filesystem, but also to produce key design documents in machine-readable forms
that can be used by automated verification tools. These documents include: (a) a formal
behavioral specification of the API provided by the filesystem, (b) a formal description of

2



the assumptions made of the underlying hardware, and (c) a list of properties concerning
key data structures and algorithms in the final implementation. We describe each of these
design artifacts below.

Specification Most modern filesystems are expected to comply with the POSIX stan-
dard [3] for filesystems. This standard specifies a set of function signatures (such as creat,
open, read, write), along with a behavioral description of each function. However, these
behavioral descriptions are given as informal English prose, and are sometime ambiguous
and incomplete from a verification standpoint. Our intent is to formalise a relevant subset2

of the POSIX filesystem interface as a set of logical properties or as an abstract reference
implementation.

Abstraction of underlying hardware In order to provide a clean separation of the
design of the filesystem from the underlying hardware, one of our first tasks has been to
start writing a full functional description of the target flash hardware. (This description
abstracts away several implementation details such as timing properties.) A key feature of
this description is that it admits all possible behaviors permitted by the hardware, including
all known fault scenarios (such as blocks becoming bad unexpectedly). We expect that this
reference design could also be used to build a virtual RAM emulation of the actual hardware
for use in runtime verification.

Properties of key data structures and routines In order to facilitate the task of
automatic checking tools, we will document key properties such as data structure invariants,
descriptions of which locks protect which data, and pre- and post-condition annotations for
various routines. We expect these annotations to be useful in enabling more precise static
analyses and runtime checks of the final implemenation code.

Summary

An important first step toward the Verification Grand Challenge is the development of a
repository containing specifications, models and implementations. We believe the best way
to develop this repository is to tackle a “mini grand challenge” that can be completed in
a short period of time, around 2-3 years. An excellent candidate for such a mini grand
challenge seems to be the development of a verifiable filesystem that is both reliable and
secure. Since filesystems are well-defined and well-understood, different research teams can
take different approaches to building such a verifiable filesystem, from building it from
scratch to verifying any one of many available filesystems. We have outlined one such
approach that our group is taking in a pilot project to build a filesystem from scratch for
use with flash memory on board a spacecraft. Our main concern is reliability (especially
reliability in the face of power failures and bad blocks); however we expect that other groups
might have other concerns (such as security). We believe that the problem is well-suited as

2Because our goal is a filesystem for use in flight software, in the interests of simplicity and reliability we
may restrict our attention to a subset of the POSIX interface (for instance, we may disallow links to files
and directories).

3



a mini challenge for the verification community and will serve as a starting point for the
grand verification challenge.

References

[1] Tony Hoare, The Verifying Compiler: A Grand Challenge for Computing Research,
Journal of the ACM, 50(1), January 2003, pp. 63–69.

[2] Amir Pnueli, Looking Ahead, Presentation at the Workshop on The Verification Grand
Challenge, SRI International, Menlo Park, CA, February, 2005. Slides available at
http://www.csl.sri.com/users/shankar/VGC05 .

[3] The Open Group, The POSIX 1003.1, 2003 Edition Specification, available online at
http://www.opengroup.org/certification/idx/posix.html .

[4] J. Yang, P. Twohey, D. Engler, and M. Musuvathi, Using Model Checking to Find Se-

rious File System Errors, Proceedings of the Conference on Operating Systems Design
and Implementation (OSDI), San Francisco, December 2004, pp. 273–288.

[5] Data I/O, A Collection of NAND Flash Application Notes, Whitepapers and Articles,
available online at http://www.data-io.com/NAND/NANDApplicationNotes.asp .

4


