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Problem Different criteria Solution Parameter selection

Clustering data sets that have local proximity
structure

Technique:

*Spectral clustering
«Constraint incorporation
Must-link constraints
Two points belonging to the same
cluster
Cannot-link constraints
Two points belonging to different
clusters

Local proximity structure:
Locally, the points belong to the same cluster as
their closest neighbors
Globally, the sub-clusters belonging to the same
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to balance the cut value and the cluster size
Ratio cut
Normalized cut

Understanding the eigenvector

Similar points will have similar values in the eigenvector

If k clusters are well separated, the eigenvector will be
piecewise constant, i.e., the points in the same
cluster will have the same values while points in
different clusters will have different values

If k clusters are not well separated, the eigenvectors will

be approximately piecewise constant

Spectral clustering
(1) Start from n by n similarity matrix A
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(2) Normalize similarity matrix
(@)P=D"4
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(3) Compute the eigenvectors of the similarity

matrix
(4) Clustering in the space spanned by the
largest k
eigenvectors
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The algorithms

* CSC: (1) uses normalization (a)
(2) For must-link constraint, set A(i,j)=1
(3) For cannot-link constraint, set A(i, j)=0
(4) Compute the P matrix and its eigenvectors

(5) Clustering in the space spanned by P’s
eigenvectors

« KKM [1] : similar to CSC, but uses normalization (c)
+ CCL [2] : Constrained Complete Linkage method
(1) Impose must-link constraint, set distance(i, j) =0

(2) Propagate must-link constraint by running all-
pairs-

shortest-path and get new distance metric
(3) Impose cannot-link constraint, set
distance(i, j)=infinity

(4) Run complete-linkage program

Results
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Resultson Iri data set. 150
instances, 4 attibutes, 3 clusters.

Results on Soybean_small data set. 47
instances, 35 atributes, and 4 clusters.

Left: The 2-dimensional plot of Soybean_small
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« Actively select constraints that represent each sub-
cluster

« Incorporate constraints

« Results: improved agreement with labels
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The 2™ largest eigenvector
derived by P matrix with
must-link constraint (1, 21),
m=0

The 2™ largest eigenvector
derived by P matrix, m=9.
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The 2™ largest eigenvector derived
by P matrix with 2 must-link
constraints (1, 21) and (11, 31), m=9.

Parameter issues
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The 2% largest The 2% largest cigenvector

cigenvector derived by P derived by P with the same
with the same 2 must-link 2 must-link constraints,
constraints, m=3 m=14

The conditions that guarantee a piecewise constant
eigenvector:

VS,VieS, 3K, VS [S=S—> TP =K,]
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This condition implies that for each point i, the sum of
its similarity value with intra-cluster points and inter-

cluster points must be a constant.

In other words, for each pair of clusters S and S’, there
exists a constant K which is the sum of the similarity
value between any point in S with any point in S’, and
vice versa.

2 2
4, =exp(fx, - x [ /20%)

« Select a sigma parameter such that the inter-cluster
similarities are approximately 0

« Estimate the local neighborhood

« For each point, compute the distances to all other
points

« Sort this distance array

« Find m such that distances i andd,,, have largest

gap

« Find the smallest m among all the points
2

.Set €Xp(d,,/207)=¢

« The first m items in the sorted distance array
correspond to the largest sub-cluster that we guarantee
to walk over in our random walk model

« Each point will have similarity value £ for its m
closest neighbors, and near-0 similarity values for points
farther than its mth closest neighbor

«m =9 for the XOR data set
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Example: one item (left, with black circle around it) and its plot of
sorted distance array (right). The red circle indicates the n1-
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Conclusions

« The eigenvectors of the P matrix will help us find each
sub-cluster

« Incorporating these constraints will result in piecewise
constant eigenvectors that can yield the correct partition for
data sets that obey local proximity structure

« The sigma parameter will influence the result; we provide
a parameter selection heuristic to solve this problem
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