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What is “Quantum Memory”?
• Just as the conventional computer memory stores classical bits of information for long

times, quantum memory is would do the same for a quantum bit of information–“qubit”.

• Quantum memory would form an integral part of future quantum information processing

systems, immaterial of actual physical systems used for implementation.

• Quantum memory should have following characteristics:

? Fast access: easy write and read processes.

? Long storage times: should not decohere.

? Scalibility: large N-qubit systems should be equally easy to store.

• We propose a simple scheme for scalable quantum memory of atomic qubits using

quantum control theory.

• Our proposal can be implementated in variety of systems including, ion trap, cavity QED,

Bose-Einstein Condensates and atoms trapped in optical lattices.

2



Overview of existing approaches to quantum memory

Loss of quantum information is attributed to unwanted coupling of the system of interest to

its surrounding, termed as decoherence. Various approaches like “decoherence-free subspaces”

and “quantum error-correcting codes” have been developed to battle this decoherence.

Decoherence-free subspaces

Special encoding of the kind, |0〉L ≡ |01〉 and |1〉L ≡ |10〉, can be shown to be immune

to collective dephasing of the type – |0〉 → |0〉 and |1〉 → eiφ |1〉.

Quantum error-correcting codes

An idea derived from conventional computing uses redundancy, syndrome measure-

ment and error-correcting procedures for protecting the loss of quantum information.

Example: Consider random bit-flip errors: |0〉 ↔ |1〉.

Encoding: |0〉L ≡ |000〉 and |1〉L ≡ |111〉

Two measurements:

First in basis {|000〉 + |111〉 + |001〉 + |110〉 , |010〉 + |101〉 + |100〉 + |011〉}, and

second in basis {|000〉 + |111〉 + |010〉 + |101〉 , |001〉 + |110〉 + |100〉 + |011〉}.

Error Correction: If the result of the two successive projection measurements is

00, do nothing

01, flip the rightmost spin

10, flip the middle spin

11, flip the leftmost spin.

This operation corrects the superposition state ca |0〉L + cb |1〉L from one bit-flip error.
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Experimental and theoretical proposals so far
• Photonic qubits:

? Light storage in atomic systemsa

? Decoherence free subspacesb

? Error correcting codesc

• Atomic qubits:

? Decoherence free subspacesd

• All implementations have been demonstrated only for single-qubit states so far.

• Scalability of all the above approaches requires more and more resources, reduces speed

and would require complicated timing issues to be resolved.

• We provide an alternative approach, which is naturally scalable and fast and needs

marginal increase in resources.

a
C. Liu et al., Nature 409, 490 (2001); D.F. Phillips et al., Phys. Rev. Lett. 86 783 (2001).

b
P. G. Kwiat et al. Science 290, 498 (2000); T. B. Pittman and J. D. Franson, Phys. Rev. A

66, 062302 (2002)
c
R. M. Gingrich et al. Phys. Rev. Lett. 91, 217901 (2003).

d
D. Kielpinski et al., Science 291, 1013 (2001).
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Single-qubit quantum memory for an atomic qubita
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• A short-lived working qubit |g1〉 − |e1〉 is to be transferred to the long lived degenerate

memory qubit |g1〉 − |g2〉.

• We assume the transition |e1〉 − |g2〉 to be forbidden to make sure we are not adding

extra decoherencing channels.

• The memory write operation is nothing but the unitary transformation U1ρ(in)U†
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Here the matrix representations are in the basis {|g1〉 , |e1〉 , |g2〉 , |e2〉} ≡ {1, 2, 3, 4}.

a
A. D. Greentree et al., quant-ph/0103118.
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Implementation of U1 through a sequence of SU(2)

transformations a

• Any unitary transformation can be reduced to a product of transformations which have

only a 2 X 2 non-trivial block of the SU(2) form apart from an identity matrix.

• Thus, it can be shown that U1 = V1V2V3V2V1.
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V1 =

0

B

B

B

B

@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0

1

C

C

C

C

A

, V2 =

0

B

B

B

B

@

0 0 0 1

0 1 0 0

0 0 1 0

−1 0 0 0

1

C

C

C

C

A

, V3 =

0

B

B

B

B

@

0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

1

C

C

C

C

A

.

• These transformation matrices V1, V2 and V3 can be easily seen to be achievable through

transformations on transitions |g2〉 − |e2〉, |e2〉 − |g1〉 and |g1〉 − |e1〉 respectively.

• Once again, the matrix representations are in the basis

{|g1〉 , |e1〉 , |g2〉 , |e2〉} ≡ {1, 2, 3, 4}.

a
V. Ramakrishna et al., Phys. Rev. A 61, 032106 (2000).
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Implementation of SU(2) transformations through

well-defined optical pulses
• Consider an optical pulse with electric field E(t) = E0(t) cos(ωe1g2

t + φ) applied to a

general state ψ(t) = a(t) |a〉 + b(t) |b〉.

• In the interaction picture, this interaction can be shown to be governed by
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• The formal solution can be shown to be:
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• Thus, with appropriate choice of φ and |γ| variety of SU(2) transformations can be

obtained.

• For example, for φ = −π/2 and |γ| = π/2 we obtain V =

 

0 1

−1 0

!

which is nothing

but the nontrivial component of V1, V2, and V3 as applied to corresponding transition.
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Quantum memory for an entangled two-qubit system

Atom A
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Atom B

• We need to identical four-level atoms as shown above.

• We consider a two-qubit state |0〉A |1〉B + |1〉A |0〉B apart from the normalization, i.e.,

the state is: |g1〉A |e1〉B + |e1〉A |g1〉B .

• Therefore,
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• Now, the expected density matrix of the system after memory-write operation would be

ρ
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• We propose that we can achieve this with the unitary transformation: U2 = U1 ⊗ U1,

i.e., U1 applied individually to each atom.
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Quantum memory for an entangled two and N-qubit

system
• By choosing the basis:

{|g1Ag1B〉 , |g1Ae1B〉 , |g1Ag2B〉 , |g1Ae2B〉 , · · · } ≡ {1, 2, 3, · · · , 16}, we can

obtain the matrix representation for ρ(in) and ρ(out).

• Thus, ρ
(in)
i,j = 1/2 with i, j = 2, 5 and ρ

(in)
i,j = 0 for the rest.

• And the expected result is :ρ
(out)
i,j = 1/2 for i, j = 3, 9 and ρ

(out)
i,j = 0 for the rest.

• It can be easily shown that for the two-qubit state:

ρ
(out)
expected = (U1 ⊗ U1)ρ

(in)
(U1 ⊗ U1)

†

• Note that we have not assumed decomposition of the two-qubit density matrix into its

one-qubit components.

• To note, this approach works trivially for two-qubit product states.

• It is very straightforward to extend this approache to a general N-qubit state because of

the simplicity of the above transformation.

• Thus,

ρ
(memory)
N−Qubit = (U1 ⊗ U1 ⊗ U1 · · ·N terms)ρ

(in)
N−Qubit(U1 ⊗ U1 · · ·N terms)

†
.
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Various advantages of the proposal
• Our proposal is naturally scalable and is very easy to implement and applies to any

N-qubit states of the product form or entangled.

• As the memory qubit is encoded into two degenerate states of an atom, there is no

decoherence and the memory is extremely long-lived.

• The scheme is general enough, so that it can be applied to variety of systems including

ion-trap, cavity QED and atoms in optical lattices or BEC on chips.

• No atom-atom interaction is required to store the entangled states into memory.

• With quantum state transfer protocols, photonic qubit states could be transferred to

atoms first and then stored for long times. Let us note that this is not similar to light

storage proposals, wherein the pulse profile is stored in the atomic coherence. For

example, out scheme would work even with polarization encoded single photon qubits

after the state-transfer to atomic qubits.

• Also note that memory read and write operations are in principal the same, except for the

phase required for the light pulses. Thus they are distinguishable and do not pose any

extra challanges for implementations.

• We are currently working towards reducing the number of pulses required for the memory

read and write operation and increasing coherence times even further.
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