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MAPPING LONG-TERM STABILITY REGIONS
USING THE FAST LYAPUNOYV INDICATOR

Benjamin F. Villaci John J. Aiellof

The determination and characterization of long-term stability
regions around periodic orbits (i.e. small, bounded variations
in the action elements of a spacecraft for several hundred to a
thousand years) is addressed using a modern numerical tool for
the detection of chaotic motion: the Fast Lyapunov Indicator
(FLI). Long-term stability regions are important for spacecraft
applications as they can be used as disposal regions for end of
mission requirements. The method is applied to the case of
distant retrograde orbits around the Jupiter’s moon Europa. It
is shown that the extent of the stability region decreases with the
stability index of the periodic orbit family, reducing to an empty
set in a neighborhood of the colinear libration point regions.

INTRODUCTION

Planetary protection requirements often preclude the impact of a spacecraft on
a celestial body that may shelter life. The disposal of the spacecraft at the end of
the mission becomes one of the challenges that a mission trajectory designer must
face. Aside from the minimization of the amount of fuel required for this last transfer
(which thus enters into the global budget of the mission), this problem involves the
additional constraint of avoiding impact with the given celestial body, and possibly
other, for a conventional, and ideally very long, amount of time (e.g. several hundred
years).

In the case of a Jupiter orbiter, Friedlander® estimated probabilities of impact with
the different moons of Jupiter over a period of 50 years. His study used a statistical
approach over a limited range of trajectories that would supposedly correspond to
end of mission trajectories of a Jupiter orbiter. These results show that the risk of
impact of a spacecraft with one of the Galilean moons of Jupiter over a period of 50
years is very high for trajectories crossing the paths of the moons. While these results
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are useful for gaining some insights into the impact risk problem, they do not provide
the mission designer with a definite method to locate and to estimate the size of the
stability regions.

Indeed, for unusually long time spans, direct numerical integration of large sets
of trajectories can become prohibitively time-consuming, while stability over short
time spans does not indicate a priori the long term behavior of the stable orbits com-
puted. By using our knowledge of the dynamical structure of the systems considered,
the integration of trajectories over relatively short time spans can be used to pro-
duce long term stability prediction. For example, results from modern perturbation
theory introduced a distinction between regular or quasi-periodic trajectories and
chaotic motion'® and indicate that regions of phase space densely filled with regular
trajectories present the desired long term stability. As celestial mechanicians have
observed during the last few decades, quasi-periodic trajectories and chaotic motion
have very different properties that can be analyzed numerically. Chaoticity indicators
are used for these purposes. For example, the well-known Lyapunov exponent, which
characterizes divergence of nearby trajectories, can be used as such an indicator, as
it reduces to zero for regular motion and takes a strictly positive value for chaotic
motion'®!4, While the computation of the Maximal Lyapunov Exponent (MLE) re-
quires the estimation of a limit, it has been shown that the computation of such an
exponent for a limited time is generally sufficient to discriminate between regular and
chaotic motion. Such an estimation is referred to as the Fast Lyapunov Indicator or
FLI%S.

After reviewing some results in modern perturbation theory in order to clarify
the notion of stability, this paper investigates the use of the FLI to compute the
extent of the stability domains that exist around stable periodic orbits, for example.
The method is applied to the family of Distant Retrograde Orbits (DRO) that exist
around planetary satellites as a continuation of the equatorial, retrograde, circular
orbits of a central force problem into a restricted three-body model® .

THEORETICAL BACKGROUND

When the Keplerian energy is negative, relative motion of neighboring particles in
a two body problem can lead to secular drifts in the along-track direction. The local
qualitative features of these dynamics are well represented by the Clohessy-Wiltshire
equations. Thus, the two body problem is unstable from a state space control view-
point. However, when considering spacecraft disposal orbits, one is not generally
concerned with the relative motion with respect to a nominal trajectory but is more
likely interested in the relative motion with respect to a nominal orbit. The distinc-
tion between trajectory (time evolution of the motion) and orbit (geometric path
described by the particle) can be understood in terms of orbital elements, namely:
stability occurs when no secular drift in quantities such as semi-major axis, a, eccen-
tricity, e, and inclination , 7, (~ action variables) occur, while any drift in longitude



of the ascending node, €2, the argument of periapsis, w and the mean anomaly, M,
(~ angle variables) are of no importance. In this framework, the two-body problem
is stable around any given nominal orbit when the energy is negative.

In order to clarify the terminology and rationale of the method to be presented
in the next section, we review here the modern dynamical theoretical background
to analyze this “secular stability”. References for this material can be found in the
original research articles® or textbooks!3.

Integrable Systems and Invariant Tori

In order to introduce some definitions we consider the dynamics in the planar two-
body problem, when viewed in a rotating frame (PR2BP). This is one of the basic
integrable systems that appears in astrodynamics and corresponds to the unperturbed
dynamics of the systems considered in this paper.

Denoting (z,y) as the Cartesian coordinates in the rotating frame, the equations
of motion of this dynamical system are given by:

I—2y—z = 3
j42—y = —o
r

where r = /22 + y? and the angular velocity of the frame and gravitational parameter
of the central body have been normalized to one.

The Hamiltonian of the system is given by:

1 1 1
Ho = 5{(pw+y)2+(py_x)2}+§ (1162-1—2/2) s
where p, = £—y and p, = y+x represent the momenta associated with the coordinates
2 and y. Another useful formulation is obtained when using the Delaunay elements!?,
which correspond to a set of action-angle variables for the problem.

1
Ho = —55+G (1)

where L = y/a and G = /a(1 — e?) correspond to the actions, the conjugate angle
variables being M and @, the longitude of periapsis defined with respect the the
rotating z-axis.

Invariant Tori. While all the trajectories are simply periodic in inertial space, this
is not the case in the rotating frame where both periodic and quasi-periodic motion
coexist. From the Hamiltonian (1) and Hamilton’s equations, we easily see that each
trajectory is determined by a set of fixed values of (a,e) and a linear time variation
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in the longitude of the periapsis, w = —t, and the mean anomaly, M = nt, where
n = a~%/? represents the mean motion. Geometrically, at fixed values of (a,e), the
space of all the possible values of (2, w) form a 2-dimensional torus. Since the time
evolution of a trajectory starting on a given torus stays on the same torus for all
times, these tori are called invariant tori.

As time varies, any initial condition (€, My) will result in a line wrapping on an
invariant torus and two main cases can be distinguished:

e When M/ is rational®; say r/s, then the motion is periodic with period 27s.
Each period corresponds to r revolutions in mean anomaly and s revolutions in
longitude of the periapsis. Each initial condition on the same torus will lead to
periodic motion with the same characteristics (e.g. period), thus foliating the
2D-torus in invariant 1D-tori (i.e. the periodic orbits). The torus for which
such a foliation occurs are called resonant tori. Note that the property of being
resonant depends only on the values of the action variables, here a and e, and
not on the angles. Indeed, the condition M/& = r/s can be reformulated as
sn+r =0, where n = a %2 = L% is the mean motion.

More generally we will say that an initial condition (I,¢) of an integrable
system H(I), where (I, ¢) are action-angle variables, is resonant if there exists
a non-zero vector, k, with integer entries such that the dot product between the
frequencies w= 0# /0l and k is zero:

dk € Z" k #0 such that ky.wi(I)+ ... + kpw,(I) =0

e When M/& is irrational the trajectory never closes upon itself and densely
fills the invariant 2D-tori. Given any values of @ and M on the torus, the
trajectory will eventually reach any neighborhood of this point at some point
in time. Such tori are called non-resonant and the trajectories lying on it are
called quasi-periodic.

In the general setting, a non-resonant tori is characterized by action variables
such that:

Vk € Z",k #0 we have kj.wi(I)+ ...+ k,.w,(I)#0

We will say, moreover, that the non-resonant torus is diophantine if the frequen-
cies satisfy the following condition with some constant v > 0 and 7 > n — 1:
Y

k.w(I)| > T VKEZN k#O

*In the model problem considered, the fact of being rational (resonant) or non-rational (non-
resonant) depends only on the semi-major axis, a, since n = a—3/? only depends on a while the
frequency corresponding to the longitude of the periapsis is independent of both a and e.



When using the Cartesian coordinates (z,y), the tori will appear as distorted
“donut” surfaces formed by families of periodic orbits in the resonant case, and a set
of quasi-periodic orbits in the non-resonant case’. Figure 1 illustrates those classic
dynamical phenomena in the (z,y, &) space. Motion lying on such invariant tori will
be called perpetually stable.

1.2

08 r

04 r

(a) (b)

Figure 1: Sample quasi-periodic trajectory in the PR2BP integrated for
500 units of time. (a) projection in configuration space. (b) 3D represen-
tation of the invariant torus associated with the trajectory.

Poincaré maps. In order to succinctly represent a family of invariant tori in a 2 degree
of freedom system, the concept of a Poincaré map, which consists of associating
each trajectory with its sequence of successive crossings with a surface of section (of
codimension 1) in phase space, can be used. It is generally assumed that an energy
integral exists and that the Poincaré map is further reduced to an energy manifold
so that the surface of section restricted to the energy manifold is now 2 dimensional.
The definition of a Poincaré map may only be local and is well defined only on the
domain of transversality of the flow with respect to this surface of section.

For example, in the above planar two-body problem one can define the surface
of section as the plane y = 0, considering crossings for which > 0, so that each
such crossing is fully represented by the values of (z,4) at a fixed “Jacobi” energy
C = —2H. Figure 2(a) presents the result of the computation of such a map.

As we can see, the iterates of a quasi-periodic trajectory form a closed curve that
represents the section of the 2D invariant tori on which it lies. Periodic orbits are

tOnly one quasi-periodic trajectory is necessary to obtain an idea on the shape of the invariant
tori since any such trajectory will densely fill this tori.
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represented as a discrete sequence of points. Thus the representation of a Poincaré
map allows us to represent a whole slice of the dynamics and easily recognize the
invariant tori in the 2D case.

dx

Figure 2: Sample Poincare maps: (a) PR2BP, C = 10.0; (b) PCR3BP,
1= 0.012, C = 10.0.

Non-integrable Systems and Stability Issues

The two-body problem is, of course, an idealized problem and one can wonder
what happens to these dynamics, and especially to the stability properties of trajecto-
ries, when perturbations are introduced. For example, the Planar Circular Restricted
3-Body Problem (PCR3BP), a classical model'” used in astrodynamical studies and
preliminary mission trajectory design’, can be viewed as a perturbed two-body prob-
lem in a rotating frame, where the perturbation models the introduction of a third
body. This model will be used in the following discussion for purpose of illustration,
as well as for its own astodynamical interest.

The convention adopted for the PCR3BP will be that of a barycentric rotating
frame with angular velocity normalized to one, the most massive body, M;, of mass
v =1 — p lying on the negative z-axis at —u, while the other primary, M,, of mass
1 will also be located on the z-axis at v. In this setting, the equations of motion are



given by the Hamiltonian #:

1 1 VoW
Ho= {o+9)’+ 0y —2)}+5 (@ +9") - — = (2)
2 2 T T2
where 71 = +/(z+ p)?+y? is the distance from the spacecraft to M;, while

r9 = v/(x — V)% + y2 is the distance from M,. The quantity C = —2H = 2Q(z, y)—v?,
will be referred as the Jacobi constant and represents a first integral of the motion
(v = \/4% + 32 being the speed of the spacecraft).

Small perturbations and nearly-integrable systems. When the added perturbations
are small and conservative, the dynamical system can be modeled by a Hamiltonian
of the form:

H(Ia ¢) =Ho (I) + ety (Ia d)) (3)

where (I, ¢) represents action-angle variables, H, is assumed to be integrable, #; to
be analytic and of the same order as Hy and € << 1. Kolmogorov, Arnold and Moser
(KAM) proved a series of results that allow us to conclude! that for small enough
conservative perturbations the majority of the invariant diophantine tori of Hy do
persist in the perturbed system, H, thus showing the existence of perpetually stable
motion in such systems. Moreover, it can be shown that the action variables vary
periodically with respect to the angle variables.

For example, performing the change of variables + — x + p or © — = + v, the
PCR3BP can be cast into the form (3) for large enough values of C. Since the
PR2BP is iso-energetically non-degenerate, KAM theory predicts that most invariant
tori of the rotating two body problem are still present in the PCR3BP. This can be
heuristically checked by computing a Poincaré map, as shown in Figure 2(b).

While the notion of perpetual stability is certainly of interest and will be the
backbone of the numerical method to be used in the next section, the set of perpetually
stable trajectories has a complex structure that does not reflect the physical notion of
a stability region. Indeed, the resonant tori are not generally preserved and leave the
place to regions in phase space with complex dynamics, mixing chaotic motion with
islands of regular motion. Chaotic motion, associated with the presence of unstable
periodic orbits, homoclinic and heteroclinic points, is characterized by a continuous
spectrum of the action variables that results in a random-like behavior of chaotic
trajectories. On the contrary, resonant islands, associated with stable periodic orbits,
are regions densely filled with invariant tori; KAM theory being in fact applicable
in these regions after a normalization process in the resonance region'®>. While in
2D systems the existence of chaotic layers does not prevent the system from being
globally, perpetually stable, this is not so for the 3 degree of freedom systems, where
diffusion of the action variables along resonances can occur.

This lack of regions densely filled with invariant tori to form a continuous, open

t Assuming some degeneracy condition on H.



domain in phase space is alleviated by several results which, for small enough per-
turbations, indicate that the diffusion time of the chaotic trajectories initially in a
neighborhood of a KAM torus is exponentially long'>!? (effective stability). The
foundational result of this subject, the Nekoroshev theorem, states that under non-
degeneracy and convexity assumptions on Hg, the variation of the actions under the
flow of the Hamiltonian (3), satisfies the following relations:

Ve <& VE<T(e)=cry/fexp ()%, |IT(t) - To|| < cae” (4)

for suitable positive constant ¢; and € and any initial condition Iy in a given open
neighborhood of phase space. Thus, a trajectory can be said to be effectively stable
when its action variables satisfy the above relations and the set of such trajectories
can be taken as the definition of a stability region.

Thus, stability regions form open domains of phase space that contain the pre-
served KAM tori®. In fact, as the diffusion time T'(¢) gets larger when closer to a
KAM torus'®, regions packed with invariant KAM tori correspond to effectively stable
regions. Thus, this notion of effective stability gives substance to our physical notion
of a stability region.

Large perturbations and physical systems. The above discussion would a priori seem
useless for our purpose as the hypothesis of small perturbations is far from being
satisfied in spacecraft applications and the above theories requires an Hamiltonian of
the form introduced by equation (3) with a small e. For example, the transit dynamics
of a spacecraft through the libration point regions is the result of a 1 : 1 resonance
with the primaries. Figure 3 presents a Poincaré section of the PCR3BP obtained at
larger values of energy, showing the predominance of chaotic motion.

As we briefly mentioned however, all the above stability theories are applicable
locally if, after some normalization process, the dynamics can be cast into the required
nearly-integrable form as given by equation (3). For instance, we have seen that the
above theories were applicable to the PCR3BP where the small parameter condition
can be translated as a condition on the value of C'. While this case is not of interest for
spacecraft applications, the dynamics around a stable periodic orbit is. For example,
Figure 4 presents a Poincaré map around a Distant Retrograde Orbit (DRO)® showing
a structure of densely filled invariant tori surrounded by a large chaotic sea. The above
theory is applicable to that case around the center of the resonant island filled by the
invariant tori. The small parameter could be taken in that case as the distance from
the nominal DRO.

In summary, the above results indicate that regions densely packed with regular
trajectories correspond to regions of very long term stability and should represent
ideal regions of phase space for very long term spacecraft disposal orbits.

$Since in that case, T'(€) = +00.
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Figure 3: Poincaré map in the PCR3BP for the Earth-Moon system (y =
0.012) at C = 3.0. As we can see, large region of phase space are dominated
by chaotic motion.
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Figure 4: Poincaré map in the PCR3BP near a stable periodic orbit for C
= 3.0 in the Europa-Jupiter system (u = 2.528 x 107°).



STABILITY REGIONS COMPUTATION

To analyze a property P of a set of trajectories over a given time span one
can sample a fixed region of initial conditions and compute the property of each
initial condition over the given time span, thus generating a contour map (or density
plot) of the property over the set of initial conditions considered (“P map”). For
example, in order to test the stability properties of a region of phase space one can
a priori integrate the set of trajectories for the desired length of time and determine
if the variation of the action variables remains bounded over that given time span.
While this method is perfectly valid for relatively short time spans, the computational
efforts quickly become prohibitive as the length of time is increased. The theoretical
background presented in the previous section allows us, however, to significantly
mitigate this computational effort by generating long term stability maps while using
relatively short integration time. Indeed, we have seen that the stability regions
considered correspond to the effective stability regions which can be approximated
by the set of regular trajectories. This last property can be determined numerically by
using chaoticity indicators, some of which require only limited computational effort.

Chaoticity Indicators

Chaoticity indicators provide a means of distinguishing between chaotic and reg-
ular motion. The first indicator appeared in the work of Lyapunov'? and Oseledec!*
and is now generally referred to as the Maximum Lyapunov Exponent (MLE), ~.

where v() is the image of an initial tangent vector to the phase space at the initial
condition considered by the state transition matrix. That is, v(t) is obtained by
integrating the system of first variational equations.

This indicator can be shown to be zero for any kind of regular motion (i.e. resonant
or not), while it does take a strictly positive value for a chaotic trajectory. While
the MLE has sound theoretical basis its numerical evaluation requires very lengthy
integration time span to ascertain for the convergence of the limit and is thus not
well suited for our purpose.

Froeschlé et al.* invesigated the behavior of the tangent vector v(t) for shorter time
spans and showed the possibility of distinguishing chaotic trajectories from regular
ones with a much smaller integration time than that required for the MLE. These
authors called this indicator the Fast Lyapunov Indicator, or FLI for short. This
indicator has been shown to be very sensitive while requiring much less computational

Yor check for some other criteria admissible for the chosen definition of stability, such as the
existence or not of an impact event with another celestial body.



effort than other chaoticity indicators. This is the indicator that we will use for the
subsequent investigations.

For completeness, we mention that many other chaoticity indicators are available.
They can be classified into two main groups according to their use of the properties
of the tangent mapping to the flow, i.e. the state transition matrix (e.g. the FLI and
MLE are part of this group), or their use of the frequency differences between regular
and chaotic trajectories (e.g., the Frequency Analysis Map or FAM'?).

The Fast Lyapunov Indicator

Several definitions of the FLI can be found in the literature. In reference (Ref.
4), Froeschle et al. investigated the behavior of the following function of the tangent
vectors, 11, ..., 13, while they used the function v, in reference (Ref. 5):

-1 . - 1 . - _ 1 . _
U= RS o men YT s e Y= StPi I lo(®)]]
where (v;) is a basis of tangent vectors, and v(t) is an arbitrary tangent vector.

The differences between these definitions lie in their sensitivity to the choice of
the initial vector (basis) and their ability to distinguish between resonant and non-
resonant regular motion. The choice of ¢35 for example reduces the dependence with
respect to the initial basis while the choice of a single vector allows the distinction
between resonant and non-resonant regular motion. The defintion of v, is also closer
to the definition of the MLE and the scaling used seems to have the right scaling to
accentuate quickly the difference between regular and chaotic motion.

For our purposes the distinction between resonant island and non-resonant regular
motion is not as important as the independence with respect to the intial basis, and a
merging of the definitions of 13 and 1, has been used to obtain an indicator as close
as possible to the definition of the MLE while requiring much less time to discriminate
between regular and chaotic motion and depending as little as possible on the choice
of the initial vector basis:

Y = supsupln||v;(7)||

<t @

Note that this definition is rather arbitraryl but what really matters is the strong
difference of behavior of this indicator for regular and chaotic motion, as we illustrate

IWhile the independence with respect to the choice of basis vector is weaker than for a single
vector, it is still dependent on it. Also, the choice of the norm used influences the exact value of
¢ obtained at any given time. In this paper the standard basis of vectors and the Euclidean norm
have been used.
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below. In the following discussion, we will call FLI the value of ¢ at a given instant
in time.

From the results of the Lyapunov exponents theory we can see that 1 should
increase faster for chaotic rather than regular trajectories so that, given a fixed inte-
gration time 7', the chaotic trajectories will be charaterized by a high value of ¢ as
compared to the regular ones. This argument is however heuristic since the MLE is
defined as a limit which can require a very long integration time before showing its
behavior. A more rigorous argument has been given in reference (Ref. 8).

Figure 5(a) presents the FLI variation with time of two different trajectories with
initial conditions taken on the Poincaré section first presented in Figure 4. The first
trajectory considered is regular and corresponds to the periodic orbit at the center of
the stability region while the second trajectory corresponds to a chaotic one, taken
at an arbitrary point in the chaotic sea. As we can observe from Figure 5, the FLI
value of the chaotic trajectory grows much faster than for the regular one. In our
case, after a time difference of 7" = 400, the jump in the FLI value is about 27, which
corresponds to a relative difference™ of more than 300%.

40 . .
Regular trajectory
Chaotic trajectory

35 4 r

30 1 r

25 4 r

20 -

FLI value

15 4 B

0 50 100 150 200 250 300 350 400
Time

Figure 5: Variation of the FLI value with time for two different trajectories
in the PCR3BP corresponding to the Europa-Jupiter system at C= 3.0.
The solid curves correspond to a regular trajectory (z = 0.9816, y = 0.0,
=0, at C = 3.0 in the Jupiter-Europa system) while the dashed curves
correspond to a chaotic trajectory (z = 0.981, y = 0.0, £ = —0.003).

This example shows us that the use of the FLI requires a preliminary calibration

**That is the ratio (FLI(chaotic) — FLI(regular)) /FLI(regular)
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to determine the integration time span 7" considered as well as the minimum value of
the FLI corresponding to a stable trajectory. The longer the time span 7" the more
detail one can obtain for the dynamics, but also the larger the computational effort
needs to be. For our purpose a value of less than one hundred of characteristic time
of our system (here the orbital period of the primaries) seems sufficient. With these
values the discrepency in the FLI value between the regular and chaotic motion is of
more than one order of magnitude.

Concerning the second calibration one can use the knowledge of a reference stable
trajectory, for example in the case of a stability region around a periodic orbit where
the FLI value of the reference periodic orbit can be used. More generally, we will see
in the next subsection that the relative difference in the FLI value between sets of
trajectories is in fact the real parameter of interest to us since it reflects the change
in stability properties of the trajectories. This relative difference increases with the
time span 7" used and should be considered in the setting of the first calibration.

FLI Maps and Stability Regions

Given the above framework one can generate FLI maps in order to determine
the stability domains in the region of phase space of interest by following the steps
summarized below:

e Parameterize the region of phase space of interest.

e Sample the corresponding parameter space in order to generate initial condi-
tions.

e Propagate the chosen points to generate a value of the FLI with each initial
condition over a given time span T.

e Generate the density plot of the computed FLI values over the parameter space.

For example, taking as the system and region of interest the system and Poinaré
section considered in Figure 4, the parameter space is given as the (z,4)-space and
the remaing initial conditions are given as y = 0 and y = /221 — C' — & with C' = 3.0.
For a time span of 7" = 400 the resulting FLI map, computed with a grid of 400 x 400
points, is presented in Figure 6. As we can observe there is a sharp contrast between
the stability region of densely filled invariant tori and the unstable region of chaotic
trajectories which allows us to recover the features observed in Figure 4 with the only
help of the FLI.

In order to better understand the meaning of the results provided by the FLI,
we investigated in greater detail a small neighborhood of the stability region around
r = 0.98207 at £ = 0 in the above example. While the theory and the comparison
with a Poincaré map indicate that low values of the FLI would generally correspond

12
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Figure 6: FLI map corresponding to the Poincaré map presented in Figure
4.

to stable motion, these results are so far only qualitative and a more quantitative
investigation seems desirable.

Figure 7 presents the value of the FLI computed on a fine grid around the chosen
boundary, which indicates that the contrast on the Poincaré map is the result of a
large jump of the FLI value over a very small scale, of order less than 10~°. For
x = 0.98207361456, the FLI value is ~ 23, while for z = 0.9207361458 the FLI value
is ~ 40. Figure 8 presents the plots of the path of the corresponding trajectories
for a time span of T" = 40000. It is observed that the trajectory with a low FLI
value does indeed remains stable (small bounded variation from the nominal DRO)
while the trajectory corresponding to a large FLI value shows a large variation in its
path, moving from a domain dominated by Jupiter’s gravitational field to a region
dominated by Europa’s gravity field.

Thus, we observe that while the computation of the FLI is only an estimation of the
regularity properties of trajectories and that stability regions are only approximated
by regions dominated by regular motion, the results provided at the energy values
considered are rather sharp.

To conclude this section, we remark that because of the strong variations in the
dynamical behavior observed at the boundary of the stability region considered the
short time numerical integration (on a length scale on the same order as that con-
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Figure 7: Zoom of the FLI values near the boundary of the stability region.

sidered for the above FLI computations 7' = 400) of the trajectories alone (without
integrating the tangent vector along the trajectory) should give a good approximation
of the stability region. The stability could be checked for example, by assuming a
trajectory to be unstable if it moves an arbitrary distance away from the DRO. The
precise criterion to use seems rather arbitrary and would in that case come from a
more experimental standpoint. Such computations would not a priori indicate any
long term stability results.

On the contrary, the FLI provides us with a definite method to characterize the
stability properties of trajectories via a single, easily computable scalar. Moreover, we
have seen that the FLI has some strong theoretical foundations that give confidence
in the long term stability properties. While these foundations are still unrigorous,
in the sense that the FLI value has not been quantitatively related to the diffusion
time of the trajectories (a relation which should also include the grid size used), the
numerical results obtained with a simple calibration seem sufficient to obtain a good
estimate of the extent of long term stability regions. Because of this missing step
(and for the sake of validating the results obtained), the final trajectory chosen in
the course of a design process should be integrated over the desired length of time to
guarantee the required stability properties.

From a computational viewpoint the evaluation of the FLI, which requires the
integration of a tangent vector, is a little more costly that the computation of the
trajectory alone (though the cost of the condition used for deciding upon the stability
property of the trajectory may well be more expensive than the computation of the
FLI). Thus, while the generation of short time integration stability maps (without

14
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Figure 8: Two trajectories at the boundary of the stability region associ-
ated with a DRO in the PCR3BP (u = 2.528 x 107°). The integration time
is T=40000 and the initial condition are given by y =1 =0, C = 3.0 and x
= 0.98207361456 (a), x=0.98207361458 (b).

the use of the FLI) may well be sufficient for some problems, we think that the
information brought by the FLI out-weighs the small computational effort overhead
associated with it.

APPLICATIONS AND DISCUSSION

In this last section we present some results obtained about the stability regions
around the DROs in the circular restricted three body problem. These results allow
us to illustrate some of the strengths of using an indicator as opposed to a Poincaré
map, as well as indicate some directions for future research.

Variation with C

We have seen that the stable regions can be approximated by a a set of trajectories
corresponding to low values of the FLI while the boundary of such regions is charac-
terized by a large jump in the FLI value, the precise value of which are determined
by the preliminary calibration. Thus, in order to minimize the computational effort
to characterize the stability regions, one can simply set a threshold value for the FLI
in the value gap at the boudary, say F' LIpresnoid, and track the level curve for this
value. The resulting curve is an approximation of the stability region boundary.

The tracking process can be achieved by using a similar algorithm as the one
presented inreference (Ref. 18). The core of the algorithm consists of a dichotomy
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process to improve the accuracy over a bracketing pair of the desired level curve.
That is, assuming given two initial conditions on the Poincaré section considered in
the previous example, X; = (z1,41) and Xy = (z9,25) with FLI values FLI; and
FLI, such that LI < FLIipreshoiq < F'LIo, then one can compute the mid point of
the segment joining X; and X, and compute the corresponding FLI value, F'LI,,;4. If
FLI,;q > FLILipreshod, then the boundary of the stability region will lie between X
and X,,;q. Simliarly, if FLI,,;q < FLIipresnoia, the process can be continued between
Xomin and X until the distance between the two end points of the bracketing pair is
small enough. The initial bracketing pair is obtained by starting from a known stable
point, such as the nominal DRO at the energy considered, and moving outwardly
along a ray in the Poincaré section considered and emanating from this point (“step-
walk” process). When a point with an FLI value larger than the threshold value has
been found an initial bracketing pair has been obtained. Finally, the last item in this
algorithm consists of obtaining a neighborhood bracketing pair once a corrected pair
has been obtained. This can be done by rotating the given pair about the nominal
initial point and locally adjusting the interval by a step-walk process similar to the
initialization phase.

The advantage of using a boundary algorithm lies in the fact that the computa-
tional effort is lowered compared to using a full grid, as was used in Figure 6. For
each value of C one thus obtains a curve representing the boundary of the stability
region and the variation of C' allows us to represent the stability region as a tubular
surface. Figure 9 shows the results of such computations.

We note that as the DRO family crosses the libration point regions the size of the
stability regions shrink until vanishing completely at two bifurcation points with an
unstable periodic orbit of period approximately 3 times the period of the DROs in
these regions. These unstable periodic orbits represent the vertices of the triangular
shaped stability region. We should like to note however, that these results have
already been observed!® using a Poincaré map, and thus support the validity of the
method adopted.

Spatial Problem

While the above computations have been restricted to the planar case, where
Poincaré maps can be used to check the prediction obtained, one of the advantage
of the FLI maps is that they are not restricted to planar problems (as opposed to
Poincaré maps which are difficult to use in systems with more than two degrees of
freedom). For example, Figures 10-12 present two dimensional slices of the stability
region around a DRO in the spatial, circular restricted three body problem. As we
can observe, while the stability region does extend in the out-of-plane direction it
remains rather confined to small inclinations. The dynamics around the boundary of
this spatial stability region is however more complex than in the planar case and small
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Stability boundary regions on the (x,dx) plane
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Figure 9: Boundaries of the stability region associated with DROs in the
Europa-Jupiter PCR3BP as a function of C: (a) projection on the (z,1)-
plane; (b) three dimensional representation.
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disconnected stability regions seem to exist apart from the main stability region.
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0.9795 0.98 0.9805 0.981 0.9815 0.982 0.9825

X
Figure 10: Section of the stability region when z and 2 are varied for y = 0,
z=0and C = 3.0 in the Europa-Jupiter system.
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Figure 11: Section of the stability region when z and 2 are varied for y = 0,
x = 0.9815 and C = 3.0 in the Europa-Jupiter system.
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Figure 12: Section of the stability region when 2z and & are varied for y = 0,
x =0.9815 and C = 3.0 in the Europa-Jupiter system.

In the same realm of ideas, we note that the use of the FLI is in fact not restricted
to autonomous or conservative systems, and can a priori be used with an ephemeris
model.

CONCLUSION

This paper investigated the use of a chaoticity indicator, the Fast Lyapunov
Indicator, in order to compute the extent of the stability regions that exists around
the stable periodic orbits, such as the Distant Retrograde Orbits. The method has
been found to predict very well the long term stability of trajectories while considering
only a relatively short integration time span. As compared to the use of Poincaré
maps, this method can be applied to any spatial and non-autonomous system, the
stability property of the trajectories being simply represented by a single scalar.

It has been observed that a large jump in FLI value occurs at the boundary of the
stability region around some DROs which allows us to compute the variation of such
stability regions with respect to the Jacobi constant by only computing the boundary
of the stability regions as a level curve of the FLI maps. This process can be viewed
as a reduction of the dimension of the problem considered.

While only two dimensional, Cartesian slices of initial conditions have been consid-
ered in this paper, the theory behind the definition of the FLI indicates that further
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reduction in the dimensionality of the data set characterizing the stability regions
should be obtained by generating FLI maps over the action variables of the system,
as was considered for a sample Hamiltonian system in references (Refs. 6, 8, 11). This
reduction should result in a concise representation of the stability properties of the
system and may help in using this information to design robust low thrust transfers.
Future work should address such issues as well as the formal relationship between
the grid size, integration time, and long term stability properties of the trajectories
considered.
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