
An Overview of the Mars Exploration Rovers Flight
Software
Glenn E. Reeves

MER Flight Software Architect
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109, USA
glenn.e.reeves@jpl.nasa.gov

Abstract - The Mars Exploration Rovers (MER) Flight
Software (FSW) is possibly the most complex software
implementation to be deployed on another planet. The
requirements dictated a software system that addressed
four distinct mission phases (cruise, landing, egress, and
surface) and the mission demanded a system with
significant autonomy. The structure of the MER flight
software is reflective of its object-oriented beginnings and
the module functions are reflective of the requirements of
the MER mission and spacecraft. This paper provides an
overview of the function and structure of the MER flight
software. The MER mission and spacecraft is briefly
discussed to provide context for the flight software
decomposition and several aspects of the software
execution model are also discussed.

Keywords: Mars, software, flight, rovers, autonomous.

1 Introduction
 NASA’s Mars Exploration Rovers (MER) project
landed two rovers, Spirit and Opportunity, on Mars on
January 4 and January 25, 2004, respectively. The
software that controls these rovers was the product of a
single development team and was developed over a period
of 35 months beginning in July 2000.

 The MER Flight Software inherits significant portions
of structure, architecture, design, and source code from the
Mars Pathfinder (MPF) software and Athena Rover
software, and, to a lesser extent, from Deep Space 1 (DS-
1), Mars 98 (MSP98), and Mars 01 (MSP01) missions.
The architectural model was originally conceived for the
MPF mission although the basis for many of the
architecture features dates farther back to ground support
equipment software for the Magellan and Cassini mission.

2 The MER Mission Requirements

The MER mission can be viewed as four distinct phases (or
four distinct missions) separated by the physical
environment and the physical changes in the vehicle
configuration. These phases are Launch/Cruise,
Entry/Descent/Landing, Deployment/Egress, and Surface

operations. Figure 1 shows the multiple physical,
configurations of the vehicle.

Figure 1 – MER Vehicle

 The Launch/Cruise phase of the mission begins on the
launch pad and terminates at the separation of the cruise
stage of the vehicle. The Entry, Descent, and Landing
phase starts while the vehicle is still approaching Mars,
overlapping, the end of the cruise phase, and can be
considered complete when the vehicle has landed
successfully and has deployed itself into a power safe
configuration. At the end of the EDL phase the rover is not
yet ready to drive as it is in a compact mechanical
configuration and still rests upon the “lander” structure.
The Deployment/Egress phase requires the careful
articulation of the mechanical configuration in order for the
vehicle to become mobile. The phase ends with the
successful egress from the lander onto the Martian surface.
At this point the vehicle is ready to perform its primary,
surface mission, which is to rove the planet surface, much
as a geologist would, examining multiple sites using its
suite of instruments.

2.1 Flight Software Responsibilities

 The Flight Software is responsible for many aspects
of the functionality of the spacecraft/rover. The
infrastructure throughout all mission phases includes

mailto:glenn.e.reeves@jpl.nasa.gov

control and management of the processor, bus and devices,
command processing, sequence execution, engineering
data collection, channelized telemetry, data compression,
spacecraft time management, power switching control and
solar array control. Celestial body position estimation
(Earth, sun, Mars, etc.) is active during all phases too.

 Flight software had to initiate and maintain
communication with the Earth, including X-Band Direct-
to-Earth (DTE) and Direct-from-Earth (DFE) throughout
cruise, EDL and surface operations as well as UHF
Communication to Earth during EDL and surface
operations.

 During cruise, propellant line thermal control was
maintained by the flight software. Other cruise attitude
control related capabilities included cruise attitude
determination and control, axial and lateral trajectory
change maneuvers, and star identification.

 Almost all Entry, Descent, & Landing activities were
performed by the flight software. This included turn to
entry, cruise stage jettison, parachute deployment, altitude
and velocity determination using radar data, retro-rocket
initiation, horizontal velocity determination and damping,
airbag deployment, lander separation, and landing event
detection. Post landing critical activities included airbag
retraction, petal deployment and solar array deployment.

 After landing the FSW was responsible for
controlling the mechanical actuations necessary to
transform the rover from the stowed configuration to a
configuration suitable for mobility. This include releasing
the rover from the lander both physically and electrically,
controlling the Rover Lift Mechanism (RLM) to lift the
rover, and orchestrating the rotation of the front wheels to
their mobility position. This multi-step process was done
with ground operators in-the-loop but the FSW controlled
the movement and monitored proper position and contact
sensors to detect both nominal and off-nominal completion
of each step.

 During surface operations, the FSW was responsible
for rover attitude and position determination. This
capability supports bore sight pointing for the engineering
and science cameras and for pointing (and tracking) Earth
with the high gain antenna. The attitude and position
knowledge is also a component of the mobility system as
the FSW monitors tilt during motion to ensure safe
orientations.

The rover mobility capability is almost entirely a
responsibility of the FSW. The ground can command the
vehicle to move using a suite of capabilities ranging from
basic motion commands to a fully autonomous mode. In
the autonomous mode the FSW takes stereo images that are
processed into range and obstacle data, identifies hazards,

and computes the safest path toward the goal. The FSW
manages the repetitive cycle of capturing images with the
front or rear fixed position cameras, determination of a safe
path avoiding obstacles, and performs the necessary
coordinated motor control for both steering and driving.
The navigation software can also use cameras on the mast.
By using the visual odometry capability, the vehicle can
reach the commanded position even in the presence of
slippage.

 The FSW is responsible for managing the science
instrument suite. This includes providing control of the
instrument configurations and capturing the science data.
The FSW does initial processing on the science data when
commanded to do so. This includes both image
compression and instrument specific data processing (Fast
Fourier Transform (FFT) and phase correction for the mast
spectrometer are examples).

 The FSW manages the motion of the Instrument
Deployment Device (IDD). The IDD is a 5 degree-of-
freedom (DOF) mechanical manipulator that is mounted on
the front of the rover's chassis. The IDD carries the suite
of in-situ instruments. The primary function of the IDD is
to place the instruments on targets (rocks, soil, magnets and
calibration targets). The ground operator commands a
desired position and selects an instrument and the FSW
computes the forward and inverse kinematics, manages the
necessary joint motion, and monitors the contact sensors to
achieve the commanded placement.

 The FSW uses a “data product” model to combine
science (and engineering) data types with the metadata
(vehicle attitude and position, time of day, relevant
temperature and power telemetry) needed by the scientist
or engineer on the ground. Data products are files stored
in the onboard FLASH file system. Data products are
broken into CCSDS formatted telemetry for transport and
then reassembled by the ground data system. The FSW
multiple data compression types for both science and
engineering data. This includes: ICER, LOCO, and LZO.

 On the surface the FSW also manages the
coordination of activities. This is required for two
significant reasons: 1) the design of the motor control
hardware limited the simultaneity of activities, and 2) a
mission design goal was to oversubscribe the system to
maximize science return and optimize the onboard
activities. The onboard software provides arbitration
between potentially conflicting activities (communication
using HGA and taking images for science) as well as
precludes certain health and safety concerns such as trying
to move/drive the vehicle while the IDD is not stowed.
This coordination mechanism couples the nominal

commanded activities and the autonomous activities as
well as the fault protection into a coordinated system.

2.2 Autonomous Activities

 One premise behind the architectural and functional
focus of the MER flight software is the recognition that
many of the critical mission events must be done
autonomously. The two-way light time precludes a ground
in-the-loop solution. With this in mind, the development
team had to decide the manner in which these "behaviors"
would be implemented.

 One implementation option was to use command
sequences to embody all of the logic necessary for both the
nominal and off-nominal (i.e. fault protection driven)
scenarios. This would have required the creation of an
extensive command suite allowing very precise, although
primitive, control. The sequence execution mechanism
would need to be significantly enhanced (beyond the MPF
design) to include the necessary conditional and branching
constructs and a robust rollback and reset recovery
mechanism.

 The second implementation option, and the one
ultimately chosen, was to embed much of the required
behavior in the flight software logic. Both the logic for the
expected activities and their off-nominal variants were built
in to the flight software. This approach largely removes
the historical separation between the nominal activities of
the system and the fault protection design. The approach
simplified many aspects of the operational model (there
was no need to build fault protection command sequences
for off-nominal scenarios) and allowed for a reasonably
simple sequence execution mechanism. The final
architecture is one with the ground initiating the vehicle
activities with “high level” commands and the FSW
completing the activity even in the presence of faults.

The following list identifies some of the flight software
autonomous behaviors (or supporting functions):

• Detection of launch vehicle separation, to initiate
Earth communication

• J2000 pointing, including attempts at using
multiple combinations of sensors and thruster
branches, for emergency sun pointing during
cruise and the critical turn to the entry attitude
during EDL.

• Axial and lateral burn control, including retries
should a reset occur.

• The entire EDL series of actions from the
beginning of the approach phase (Landing minus 5
days through the successful completion of the

rover solar array deployment (on the Martian
surface)

• Coordinated mechanism and motor control for
rover standup

• Coordinated driving that includes imaging, hazard
detection and wheel movement. Fault detection
and safety reactions are built into this behavior.

• Sky/sun search and identification for surface
attitude determination.

• Communication including start and end times,
hardware configuration, rates, and mode.

One other positive aspect of the decision to use behaviors
rather than sequences was that it forced the maturity of the
system design; there could be no procrastination or
deferment because the design was coded in the flight
software.

3 Flight Software Structure

 The flight software is a collection of 93 modules.
Table 1 lists the modules and briefly identifies their
function. The design emphasizes interfaces, encapsulation,
and modularity. As such, a modules’ existence could be
for one of several reasons. Many of the modules are the
result of an object-oriented analysis process bringing
together objects with significant collaborations. This is
true of many of the MPF heritage modules where the
development team used the techniques in [1] to design the
original architecture. An equal number, especially those
that do not have MPF pedigree, reflect a functional
decomposition of the overall system. The MER schedule
largely precluded revisiting the broad object oriented
analysis done originally. Some of the modules reflect a
one-to-one mapping with the execution model viewpoint
(i.e. they represent a task/thread). Lastly, a few of the
modules exist solely to support the assignment of effort to
the software development team; each of the modules had
one primary developer.

 There is a loose arrangement of modules into layers,
though there is no enforcement. A module can
theoretically communicate with any other module (only
through its interfaces). In practice the interaction between
modules is much more limited. The lowest layer is the
Hardware Abstraction Layer and contains the simplest
functions to access hardware devices. The highest layer is
the behavior layer. The layers in between represent a
conceptual separation between those functions necessary
for all (or at least most) spacecraft and those that are
increasingly mission unique or increasingly autonomous.
Figure 2 identifies the layers.

Hardware Objec t & Device Driver Layer

Core Application L ayer

Behavio r Layer

Spacec raft, Payload & Mission Application Lay er

Hardware Access Layer

Figure 2 – FSW Layers

 The Flight Software is coded primarily in ANSI C,
with some targeted assembly code and some C++. The size
of the system, in source lines of code (SLOC), is [300K]
but this value does not include the operating system.

 Although many aspects of the design are objected-
oriented, the features of the language incorporating
inheritance and polymorphism are not exploited. We have
found that when implemented to their fullest extent in C++,
these constructs result in detrimental code size and add the
potential for non-deterministic behavior. These costs,
especially in time and effort to achieve a robust
implementation, outweigh the benefits.

4 Software Execution Model
 The flight software executes on the single processor
controlled by a real-time operating system. The MER FSW
incorporates the VxWorks real-time operating system that
supplies the basic outline of how the MER flight software
operates. The flight software consists of multiple, pre-
emptive, prioritized, tasks (threads) all of which run under
vxWorks. There are 97 tasks in the MER flight software.
The OS also provides basic facilities in addition to tasks
including: time and timers, math libraries, I/O, files,
logging, message queues, and semaphores (and many
others). The operating system expects a real-time clock
tick to drive the system clock and this is supplied as an
interrupt from the MER specific hardware (versus from the
computer board clock).

4.1.1 Tasks
 The relationship between modules and tasks is not
one-to-one. Several modules are libraries. There are a
number of tasks that have common source code (sixteen
sequence machine tasks) and some modules have multiple
tasks (there are thirteen fault protection response tasks). In
many cases, a task represents a service that has a functional
responsibility, and a response-time requirement. For
example, the acs task encapsulates all of the cruise attitude
estimation and control function with a rate requirement of
8hz. It also processes commands and produces telemetry
related to attitude estimation and control. Not all of the

tasks have functional responsibility. For example, the bcp
and btp tasks provide execution contexts for the processing
of low priority commands and low priority telemetry for
several devices and functions. Similarly, the bc task (for
1553 resident devices) and the dat tasks’ sole purpose is to
provide an active context for the hardware objects1 to
perform their data acquisition.

 Each task is given a priority commensurate with its
required response time, and there are very few changes to
this priority during the mission. There are both cyclic
(time event driven) and sporadic (event-driven) tasks in the
system. Tasks execution is driven by the arrival of
messages via the ipc system (see below) and do not poll.
Interrupts produce a message that wakes the task that
services the interrupt.

4.1.2 Inter-Process Communication
 The principal mechanism for task communication is
by the facilities provided in the ipc and reply modules. The
inter-process communication is message based and
implemented using VxWorks pipes. Messages are point-
to-point – there is no broadcast and every task in the
system has at least one message queue. When a client task
sends a message to a server task, it calls a void-return
method defined in the server module using a direct
function call. This method will execute in the client’s task
context but results in putting a message on one of the
server task’s queues. Note that the server defines which
queue is used and the format of the message itself. This
approach keeps such information local to the server and
changes here do not impact the client’s code.

 Each queue represents a series of messages in arrival
time order. By assigning messages to queues, each queue
can be treated as being at a particular priority, or specific
queues can be ignored depending on the state of the task.
Each queue is of fixed length and can hold a given
maximum number of messages. Each message in a queue
is made to consume the same amount of space. Interrupt
handlers, timers, and commands also result in a message.
The goal is for every interaction between tasks, between a
service (like timers) and a task, and between an interrupt
handler and a task be through an IPC message. Figure 3
graphically shows this model.

 However, such is not always the most practical
method of communication. Thus there are instances of
shared memory interaction, either using semaphores,
mutual-exclusion controls, or sometimes via no
synchronization methods at all. One is the use of a double

1 The hardware object pattern encapsulates all attributes and
interfaces of the hardware device it represents. One public
interface is the service_hw() method which extracts data
from the hardware.

buffer, shared memory pattern in the data collection
pipeline. Data consumer tasks access the shared memory
via a public interface owned by the representative hardware
object. The actual data extraction from the hardware
interfaces occurs during the dat and bc task execution.

 The ipc architecture includes a “reply” pattern that
allows a client to request a callback via one of the client’s
public interfaces. The original intention of this addition to
the original MPF ipc system was to provide a
synchronization mechanism to the event oriented command
sequence mechanism and similar synchronization
mechanism to be used by the spacecraft configuration
management function. These two functions need to both
wait for prior requests to complete but to also know the
success or failure of the action.

Table 1 – MER FSW Modules

Module Description Module Description
accm Alarm clock and wakeup function init Initialization
acl Alarm Clock Hardware Object ipc Inter-process communication
acm Activity Constraint Manager latch_valv

e
Latch Valve Hardware Object

acs Attitude Control System lsid Lander Stage Interface HO
acsutils ACS Math Utilities math Math Utilities
adc Analog Data Collection mcas Motor Board Analog Scanner
aman Auto Maneuver mcl Mission Clock Services
arb Resource Arbitration Control mem Memory allocation services
bc 1553 Bus Control mfsk EDL tone telemetry service
bcp Background Command Process mobm Mobility Behavior Manager
bsp Boot and vxWorks initialization mot Motor control
btp Background Telemetry Process mrf Mirror RAM to Flash
catbed Catbed Heater Hardware Object nav Surface Navigation
cbm Communication Behavior nvm Non-Volatile Memory services
cmd,cmd_valid Command translation and dispatch pas Payload Analog Scanner (HO)
comp Compression Services pdp Prioritized Data Products
cpu R6K SBC Services perf, prf FSW Performance measure
crc Critical Relay Control pma Pancam Mast Assembly
csid Cruise Stage Interface (HO) pty Standard I/O Capture
dat Non-1553 Data acquisition pwr Power device management
ddi Sequence variables pyld Science Instrument Control
dimes Descent trajectory estimation pyro Pyro event management
drive Basic driving services ras Radar Altimeter System (HO)
dsa Digital Sun Sensor (HO) rat Rock Abrasion Tool
dwn Downlink (XBAND and UHF) reply Inter-process communication
edl EDL Behavior Manager reu Remote Engineering Unit

(HO)
eep EEPROM Management rfr, rfs Radio Subsystem Services
eha Channel telemetry sam Structures & Mechanisms
eheap Extended Memory/Heap Manager sapp Surface Attitude & Position
evr Event Record Telemetry scm Spacecraft Config Manager
fbm Fault Behavior Manager sdst XBAND Transponder (HO)
files File System Services seq Sequence
fme File Metadata (Data Product) ssa Star Scanner Hardware Object
fswld Flight Software Load and Patch sspa Solid State Amplifier (HO)
globals Constant global information standup Standup behavior
hal Hardware Access Layer tffs FLASH file system support
health FSW health determination thermal Thermal control
heap Downlink heap services thruster Thruster Hardware Object
hga HGA Pointing tim Timing Services
hst Data history/ring buffer manager uhft UHF Radio hardware object
idd Instrument Deployment Device upl Uplink
idle idle task, statistics collection util Utility command service
iit IMU and Inertial Vector Propagation vis VME Interrupt Services
img Imaging services vsbm Shutdown behavior manager
imu Inertial Measurement Unit (HO) vxWorks VxWorks OS
init Initialization * HO – Hardware Object

4.2 Rate Groups and Task Priorities

 There are no rate groups per se. Instead, a task with
rate requirement subscribes to a timer service (the tim
module) that delivers messages at the correct rate. The
message is received by the task subscribing to the service,
and at every interval, that task’s event loop gets the
message and performs the work specified by its current
state. The time event message is usually a higher-priority
message (i.e. these messages are delivered to an ipc queue
that is serviced first), so if there are other messages for the
same task, the higher priority work is performed first. That
is, one may look at commands and other events as
executing between time event messages. It is possible to
subscribe to more than one time event. The tim module
provides event notifications for time periods synchronized
to the spacecraft time as well as for relative durations (i.e.
10 seconds from now).

 Each task has an execution priority, with higher-
priority (lower priority number) going to those tasks with
greater criticality. In the MER implementation several
tasks wait for the arrival of the 8Hz time event. The
priority of the task dictates the order that processing
occurs.

4.3 Figure 3 - Messages, Queues, and Task
Architecture

 Many tasks do not have a rate requirement and are
entirely event driven. This event can be the reception of a
message from an interrupt handler, the arrival of a message
indicating a command, or a request for action from another
task. The priority of tasks in this category is dictated by
the relative importance of their primary function. For
example, the sequence engine tasks are higher priority than
the image processing tasks (command execution is higher
priority) but lower than the cbm task that controls the semi-

autonomous communication (communicating is higher
priority).

5 Conclusion
 The MER flight software is a complex product that
was developed on a very tight schedule. However, the
system and software have performed very well throughout
the entire mission. The design decomposition into modules
reflects the system and mission requirements. The
assignment of tasks under the real-time OS is reflective of
the separation and priority of the different and varied
system activities. The software enforces encapsulation by
requiring module-to-module interaction only via public
interfaces and the message based inter-process
communication enforces this separation in the execution
model.

6 Acknowledgments
 The success of the MER mission is a testament to the
dedication and tenaciousness of the combined team of
management, system engineers, flight software developers,
and test engineers who designed and built these spacecraft.
The author wishes to thank the flight software team in
particular for their professionalism, patience, and
unswerving focus on building a quality product. The
author would also like to thank everyone whose material is
contained in the MER Flight Software Baseline
Architecture and Design Document (FSBADD) from
which a significant portion of this paper is based. In
particular, the author wishes to thank Joe Snyder and Ed
Kan for bringing that document to fruition and Kim
Gostelow, Mary Lam, and Tracy Neilson who provided
significant assistance in the preparation of this paper.

TASK

Interrupt
Service
Routine

Timer
Services

Command
Task

Other
Task

Requests for service,
(via public interfaces)

Command
message

Interrupt
event
message

Timer
expiration

Message
Queues
(more than 1 if required)

….
Higher priority

 The flight software development described in this
paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the
National Aeronautics and Space Administration.

7 References
[1] Rebecca Wirfs-Brock, Brian Wilkerson, Lauren
Weiner, Designing Object-Oriented Software, PTR
Prentice-Hall, New Jersey, 1990

[2] Joseph F. Snyder, Edwin P. Kan, the MER FSW
Team, “MER Flight Software Baseline Architecture and
Design Document”, Jet Propulsion Laboratory Document,
December 21, 2001,

[3] Kim Gostelow, Mary Lam, “MSL FSW Architecture
Description”, Jet Propulsion Laboratory Document,
February 2005,

	Introduction
	The MER Mission Requirements
	Flight Software Responsibilities
	Autonomous Activities

	Flight Software Structure
	Software Execution Model
	Tasks
	Inter-Process Communication

	Rate Groups and Task Priorities
	Figure 3 - Messages, Queues, and Task Architecture

	Conclusion
	Acknowledgments
	References

