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Abstract - The Mars Exploration Rovers (MER) Flight 
Software (FSW) is possibly the most complex software 
implementation to be deployed on another planet.  The 
requirements dictated a software system that addressed 
four distinct mission phases (cruise, landing, egress, and 
surface) and the mission demanded a system with 
significant autonomy.   The structure of the MER flight 
software is reflective of its object-oriented beginnings and 
the module functions are reflective of the requirements of 
the MER mission and spacecraft. This paper provides an 
overview of the function and structure of the MER flight 
software.  The MER mission and spacecraft is briefly 
discussed to provide context for the flight software 
decomposition and several aspects of the software 
execution model are also discussed. 
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1 Introduction 
 NASA’s Mars Exploration Rovers (MER) project 
landed two rovers, Spirit and Opportunity, on Mars on 
January 4 and January 25, 2004, respectively.  The 
software that controls these rovers was the product of a 
single development team and was developed over a period 
of 35 months beginning in July 2000. 

 The MER Flight Software inherits significant portions 
of structure, architecture, design, and source code from the 
Mars Pathfinder (MPF) software and Athena Rover 
software, and, to a lesser extent, from Deep Space 1 (DS-
1), Mars 98 (MSP98), and Mars 01 (MSP01) missions.  
The architectural model was originally conceived for the 
MPF mission although the basis for many of the 
architecture features dates farther back to ground support 
equipment software for the Magellan and Cassini mission. 

2 The MER Mission Requirements 
 
The MER mission can be viewed as four distinct phases (or 
four distinct missions) separated by the physical 
environment and the physical changes in the vehicle 
configuration.  These phases are Launch/Cruise, 
Entry/Descent/Landing, Deployment/Egress, and Surface 

operations.  Figure 1 shows the multiple physical, 
configurations of the vehicle. 
 
 

 
Figure 1 – MER Vehicle 

 
 The Launch/Cruise phase of the mission begins on the 
launch pad and terminates at the separation of the cruise 
stage of the vehicle.  The Entry, Descent, and Landing 
phase starts while the vehicle is still approaching Mars, 
overlapping, the end of the cruise phase, and can be 
considered complete when the vehicle has landed 
successfully and has deployed itself into a power safe 
configuration.  At the end of the EDL phase the rover is not 
yet ready to drive as it is in a compact mechanical 
configuration and still rests upon the “lander” structure.  
The Deployment/Egress phase requires the careful 
articulation of the mechanical configuration in order for the 
vehicle to become mobile.  The phase ends with the 
successful egress from the lander onto the Martian surface.  
At this point the vehicle is ready to perform its primary, 
surface mission, which is to rove the planet surface, much 
as a geologist would, examining multiple sites using its 
suite of instruments. 

 
2.1 Flight Software Responsibilities 

 The Flight Software is responsible for many aspects 
of the functionality of the spacecraft/rover.  The 
infrastructure throughout all mission phases includes 
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control and management of the processor, bus and devices, 
command processing, sequence execution, engineering 
data collection, channelized telemetry, data compression, 
spacecraft time management, power switching control and 
solar array control.  Celestial body position estimation 
(Earth, sun, Mars, etc.) is active during all phases too.  

 Flight software had to initiate and maintain 
communication with the Earth, including X-Band Direct-
to-Earth (DTE) and Direct-from-Earth (DFE) throughout 
cruise, EDL and surface operations as well as UHF 
Communication to Earth during EDL and surface 
operations.  

 During cruise, propellant line thermal control was 
maintained by the flight software. Other cruise attitude 
control related capabilities included cruise attitude 
determination and control, axial and lateral trajectory 
change maneuvers, and star identification. 

 Almost all Entry, Descent, & Landing activities were 
performed by the flight software.  This included turn to 
entry, cruise stage jettison, parachute deployment, altitude 
and velocity determination using radar data, retro-rocket 
initiation, horizontal velocity determination and damping, 
airbag deployment, lander separation, and landing event 
detection.  Post landing critical activities included airbag 
retraction, petal deployment and solar array deployment. 

 After landing the FSW was responsible for 
controlling the mechanical actuations necessary to 
transform the rover from the stowed configuration to a 
configuration suitable for mobility.  This include releasing 
the rover from the lander both physically and electrically, 
controlling the Rover Lift Mechanism (RLM) to lift the 
rover, and orchestrating the rotation of the front wheels to 
their mobility position. This multi-step process was done 
with ground operators in-the-loop but the FSW controlled 
the movement and monitored proper position and contact 
sensors to detect both nominal and off-nominal completion 
of each step. 

 During surface operations, the FSW was responsible 
for rover attitude and position determination.  This 
capability supports bore sight pointing for the engineering 
and science cameras and for pointing (and tracking) Earth 
with the high gain antenna.  The attitude and position 
knowledge is also a component of the mobility system as 
the FSW monitors tilt during motion to ensure safe 
orientations. 

The rover mobility capability is almost entirely a 
responsibility of the FSW.  The ground can command the 
vehicle to move using a suite of capabilities ranging from 
basic motion commands to a fully autonomous mode.  In 
the autonomous mode the FSW takes stereo images that are 
processed into range and obstacle data, identifies hazards, 

and computes the safest path toward the goal. The FSW 
manages the repetitive cycle of capturing images with the 
front or rear fixed position cameras, determination of a safe 
path avoiding obstacles, and performs the necessary 
coordinated motor control for both steering and driving.  
The navigation software can also use cameras on the mast.  
By using the visual odometry capability, the vehicle can 
reach the commanded position even in the presence of 
slippage. 

 

 The FSW is responsible for managing the science 
instrument suite.  This includes providing control of the 
instrument configurations and capturing the science data.  
The FSW does initial processing on the science data when 
commanded to do so.  This includes both image 
compression and instrument specific data processing (Fast 
Fourier Transform (FFT) and phase correction for the mast 
spectrometer are examples). 

 The FSW manages the motion of the Instrument 
Deployment Device (IDD).  The IDD is a 5 degree-of-
freedom (DOF) mechanical manipulator that is mounted on 
the front of the rover's chassis.  The IDD carries the suite 
of in-situ instruments. The primary function of the IDD is 
to place the instruments on targets (rocks, soil, magnets and 
calibration targets).  The ground operator commands a 
desired position and selects an instrument and the FSW 
computes the forward and inverse kinematics, manages the 
necessary joint motion, and monitors the contact sensors to 
achieve the commanded placement. 

 The FSW uses a “data product” model to combine 
science (and engineering) data types with the metadata 
(vehicle attitude and position, time of day, relevant 
temperature and power telemetry) needed by the scientist 
or engineer on the ground.   Data products are files stored 
in the onboard FLASH file system.  Data products are 
broken into CCSDS formatted telemetry for transport and 
then reassembled by the ground data system.  The FSW 
multiple data compression types for both science and 
engineering data.  This includes: ICER, LOCO, and LZO. 

 On the surface the FSW also manages the 
coordination of activities.  This is required for two 
significant reasons: 1) the design of the motor control 
hardware limited the simultaneity of activities, and 2) a 
mission design goal was to oversubscribe the system to 
maximize science return and optimize the onboard 
activities.   The onboard software provides arbitration 
between potentially conflicting activities (communication 
using HGA and taking images for science) as well as 
precludes certain health and safety concerns such as trying 
to move/drive the vehicle while the IDD is not stowed.  
This coordination mechanism couples the nominal 



commanded activities and the autonomous activities as 
well as the fault protection into a coordinated system. 

2.2 Autonomous Activities 

 
 One premise behind the architectural and functional 
focus of the MER flight software is the recognition that 
many of the critical mission events must be done 
autonomously.  The two-way light time precludes a ground 
in-the-loop solution.  With this in mind, the development 
team had to decide the manner in which these "behaviors" 
would be implemented. 

 One implementation option was to use command 
sequences to embody all of the logic necessary for both the 
nominal and off-nominal (i.e. fault protection driven) 
scenarios.  This would have required the creation of an 
extensive command suite allowing very precise, although 
primitive, control.  The sequence execution mechanism 
would need to be significantly enhanced (beyond the MPF 
design) to include the necessary conditional and branching 
constructs and a robust rollback and reset recovery 
mechanism. 

 The second implementation option, and the one 
ultimately chosen, was to embed much of the required 
behavior in the flight software logic.  Both the logic for the 
expected activities and their off-nominal variants were built 
in to the flight software.  This approach largely removes 
the historical separation between the nominal activities of 
the system and the fault protection design.  The approach 
simplified many aspects of the operational model (there 
was no need to build fault protection command sequences 
for off-nominal scenarios) and allowed for a reasonably 
simple sequence execution mechanism.  The final 
architecture is one with the ground initiating the vehicle 
activities with “high level” commands and the FSW 
completing the activity even in the presence of faults. 

The following list identifies some of the flight software 
autonomous behaviors (or supporting functions): 

• Detection of launch vehicle separation, to initiate 
Earth communication 

• J2000 pointing, including attempts at using 
multiple combinations of sensors and thruster 
branches, for emergency sun pointing during 
cruise and the critical turn to the entry attitude 
during EDL. 

• Axial and lateral burn control, including retries 
should a reset occur. 

• The entire EDL series of actions from the 
beginning of the approach phase (Landing minus 5 
days through the successful completion of the 

rover solar array deployment (on the Martian 
surface) 

• Coordinated mechanism and motor control for 
rover standup 

• Coordinated driving that includes imaging, hazard 
detection and wheel movement.  Fault detection 
and safety reactions are built into this behavior. 

• Sky/sun search and identification for surface 
attitude determination. 

• Communication including start and end times, 
hardware configuration, rates, and mode. 

One other positive aspect of the decision to use behaviors 
rather than sequences was that it forced the maturity of the 
system design; there could be no procrastination or 
deferment because the design was coded in the flight 
software. 

 
3 Flight Software Structure 
 
 The flight software is a collection of 93 modules.   
Table 1 lists the modules and briefly identifies their 
function. The design emphasizes interfaces, encapsulation, 
and modularity.   As such, a modules’ existence could be 
for one of several reasons.  Many of the modules are the 
result of an object-oriented analysis process bringing 
together objects with significant collaborations.  This is 
true of many of the MPF heritage modules where the 
development team used the techniques in [1] to design the 
original architecture.  An equal number, especially those 
that do not have MPF pedigree, reflect a functional 
decomposition of the overall system.  The MER schedule 
largely precluded revisiting the broad object oriented 
analysis done originally.  Some of the modules reflect a 
one-to-one mapping with the execution model viewpoint 
(i.e. they represent a task/thread).   Lastly, a few of the 
modules exist solely to support the assignment of effort to 
the software development team; each of the modules had 
one primary developer. 

 There is a loose arrangement of modules into layers, 
though there is no enforcement.  A module can 
theoretically communicate with any other module (only 
through its interfaces).  In practice the interaction between 
modules is much more limited. The lowest layer is the 
Hardware Abstraction Layer and contains the simplest 
functions to access hardware devices.  The highest layer is 
the behavior layer.  The layers in between represent a 
conceptual separation between those functions necessary 
for all (or at least most) spacecraft and those that are 
increasingly mission unique or increasingly autonomous.  
Figure 2 identifies the layers. 
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Figure 2 – FSW Layers 

 The Flight Software is coded primarily in ANSI C, 
with some targeted assembly code and some C++. The size 
of the system, in source lines of code (SLOC), is [300K] 
but this value does not include the operating system. 

 Although many aspects of the design are objected-
oriented, the features of the language incorporating 
inheritance and polymorphism are not exploited.  We have 
found that when implemented to their fullest extent in C++, 
these constructs result in detrimental code size and add the 
potential for non-deterministic behavior.  These costs, 
especially in time and effort to achieve a robust 
implementation, outweigh the benefits. 

4 Software Execution Model 
 The flight software executes on the single processor 
controlled by a real-time operating system. The MER FSW 
incorporates the VxWorks real-time operating system that 
supplies the basic outline of how the MER flight software 
operates. The flight software consists of multiple, pre-
emptive, prioritized, tasks (threads) all of which run under 
vxWorks. There are 97 tasks in the MER flight software.  
The OS also provides basic facilities in addition to tasks 
including: time and timers, math libraries, I/O, files, 
logging, message queues, and semaphores (and many 
others).  The operating system expects a real-time clock 
tick to drive the system clock and this is supplied as an 
interrupt from the MER specific hardware (versus from the 
computer board clock).  

4.1.1 Tasks 
 The relationship between modules and tasks is not 
one-to-one.  Several modules are libraries.  There are a 
number of tasks that have common source code (sixteen 
sequence machine tasks) and some modules have multiple 
tasks (there are thirteen fault protection response tasks). In 
many cases, a task represents a service that has a functional 
responsibility, and a response-time requirement.  For 
example, the acs task encapsulates all of the cruise attitude 
estimation and control function with a rate requirement of 
8hz.  It also processes commands and produces telemetry 
related to attitude estimation and control.  Not all of the 

tasks have functional responsibility.  For example, the bcp 
and btp tasks provide execution contexts for the processing 
of low priority commands and low priority telemetry for 
several devices and functions.  Similarly, the bc task (for 
1553 resident devices) and the dat tasks’ sole purpose is to 
provide an active context for the hardware objects1 to 
perform their data acquisition.   

 Each task is given a priority commensurate with its 
required response time, and there are very few changes to 
this priority during the mission.  There are both cyclic 
(time event driven) and sporadic (event-driven) tasks in the 
system.  Tasks execution is driven by the arrival of 
messages via the ipc system (see below) and do not poll.  
Interrupts produce a message that wakes the task that 
services the interrupt. 

4.1.2 Inter-Process Communication 
 The principal mechanism for task communication is 
by the facilities provided in the ipc and reply modules.  The 
inter-process communication is message based and 
implemented using VxWorks pipes.  Messages are point-
to-point – there is no broadcast and every task in the 
system has at least one message queue.  When a client task 
sends a message to a server task, it calls a void-return 
method defined in the server module using a direct 
function call.   This method will execute in the client’s task 
context but results in putting a message on one of the 
server task’s queues.  Note that the server defines which 
queue is used and the format of the message itself.  This 
approach keeps such information local to the server and 
changes here do not impact the client’s code. 

 Each queue represents a series of messages in arrival 
time order.  By assigning messages to queues, each queue 
can be treated as being at a particular priority, or specific 
queues can be ignored depending on the state of the task.  
Each queue is of fixed length and can hold a given 
maximum number of messages.  Each message in a queue 
is made to consume the same amount of space. Interrupt 
handlers, timers, and commands also result in a message.  
The goal is for every interaction between tasks, between a 
service (like timers) and a task, and between an interrupt 
handler and a task be through an IPC message. Figure 3 
graphically shows this model.  

 However, such is not always the most practical 
method of communication.  Thus there are instances of 
shared memory interaction, either using semaphores, 
mutual-exclusion controls, or sometimes via no 
synchronization methods at all.  One is the use of a double 

                                                           
1 The hardware object pattern encapsulates all attributes and 
interfaces of the hardware device it represents.  One public 
interface is the service_hw() method which extracts data 
from the hardware. 



buffer, shared memory pattern in the data collection 
pipeline.   Data consumer tasks access the shared memory 
via a public interface owned by the representative hardware 
object.  The actual data extraction from the hardware 
interfaces occurs during the dat and bc task execution.  

 The ipc architecture includes a “reply” pattern that 
allows a client to request a callback via one of the client’s 
public interfaces.  The original intention of this addition to 
the original MPF ipc system was to provide a 
synchronization mechanism to the event oriented command 
sequence mechanism and similar synchronization 
mechanism to be used by the spacecraft configuration 
management function.  These two functions need to both 
wait for prior requests to complete but to also know the 
success or failure of the action.   

 

 

 

 



Table 1 – MER FSW Modules 

Module Description  Module Description 
accm Alarm clock and wakeup function  init Initialization 
acl Alarm Clock Hardware Object  ipc Inter-process communication 
acm Activity Constraint Manager  latch_valv

e 
Latch Valve Hardware Object 

acs Attitude Control System  lsid Lander Stage Interface HO 
acsutils ACS Math Utilities  math Math Utilities 
adc Analog Data Collection  mcas Motor Board Analog Scanner  
aman Auto Maneuver    mcl Mission Clock Services 
arb Resource Arbitration Control  mem Memory allocation services 
bc 1553 Bus Control  mfsk EDL tone telemetry service 
bcp Background Command Process  mobm Mobility Behavior Manager 
bsp Boot and vxWorks initialization  mot Motor control 
btp Background Telemetry Process  mrf Mirror RAM to Flash 
catbed Catbed Heater Hardware Object  nav Surface Navigation 
cbm Communication Behavior   nvm Non-Volatile Memory services 
cmd,cmd_valid Command translation and dispatch  pas Payload Analog Scanner (HO) 
comp Compression Services  pdp Prioritized Data Products 
cpu R6K SBC Services  perf, prf FSW Performance measure 
crc Critical Relay Control  pma Pancam Mast Assembly 
csid Cruise Stage Interface (HO)  pty Standard I/O Capture 
dat Non-1553 Data acquisition  pwr Power device management 
ddi Sequence variables  pyld Science Instrument Control 
dimes Descent trajectory estimation  pyro Pyro event management 
drive Basic driving services  ras Radar Altimeter System (HO) 
dsa Digital Sun Sensor (HO)  rat Rock Abrasion Tool 
dwn Downlink (XBAND and UHF)  reply Inter-process communication 
edl EDL Behavior Manager  reu Remote Engineering Unit 

(HO) 
eep EEPROM Management  rfr, rfs Radio Subsystem Services 
eha Channel telemetry  sam Structures & Mechanisms 
eheap Extended Memory/Heap Manager  sapp Surface Attitude & Position 
evr Event Record Telemetry  scm Spacecraft Config Manager 
fbm Fault Behavior Manager  sdst XBAND Transponder (HO) 
files File System Services  seq Sequence 
fme File Metadata (Data Product)  ssa Star Scanner Hardware Object 
fswld Flight Software Load and Patch  sspa Solid State Amplifier (HO) 
globals Constant global information  standup Standup behavior 
hal Hardware Access Layer  tffs FLASH file system support 
health FSW health determination  thermal Thermal control 
heap Downlink heap services  thruster Thruster Hardware Object 
hga HGA Pointing  tim Timing Services 
hst Data history/ring buffer manager  uhft UHF Radio hardware object 
idd Instrument Deployment Device   upl Uplink 
idle idle task, statistics collection  util Utility command service 
iit IMU and Inertial Vector Propagation  vis VME Interrupt Services 
img Imaging services  vsbm Shutdown behavior manager 
imu Inertial Measurement Unit (HO)  vxWorks VxWorks OS 
init Initialization   * HO – Hardware Object 

 



4.2 Rate Groups and Task Priorities 

 There are no rate groups per se.  Instead, a task with 
rate requirement subscribes to a timer service (the tim 
module) that delivers messages at the correct rate.  The 
message is received by the task subscribing to the service, 
and at every interval, that task’s event loop gets the 
message and performs the work specified by its current 
state.  The time event message is usually a higher-priority 
message (i.e. these messages are delivered to an ipc queue 
that is serviced first), so if there are other messages for the 
same task, the higher priority work is performed first.  That 
is, one may look at commands and other events as 
executing between time event messages.  It is possible to 
subscribe to more than one time event.  The tim module 
provides event notifications for time periods synchronized 
to the spacecraft time as well as for relative durations (i.e. 
10 seconds from now). 

 Each task has an execution priority, with higher-
priority (lower priority number) going to those tasks with 
greater criticality.  In the MER implementation several 
tasks wait for the arrival of the 8Hz time event.  The 
priority of the task dictates the order that processing 
occurs. 

 

 

4.3 Figure 3 - Messages, Queues, and Task 
Architecture 

 
 Many tasks do not have a rate requirement and are 
entirely event driven.  This event can be the reception of a 
message from an interrupt handler, the arrival of a message 
indicating a command, or a request for action from another 
task.  The priority of tasks in this category is dictated by 
the relative importance of their primary function.  For 
example, the sequence engine tasks are higher priority than 
the image processing tasks (command execution is higher 
priority) but lower than the cbm task that controls the semi-

autonomous communication (communicating is higher 
priority). 

 
5 Conclusion 
 The MER flight software is a complex product that 
was developed on a very tight schedule.  However, the 
system and software have performed very well throughout 
the entire mission.  The design decomposition into modules 
reflects the system and mission requirements.  The 
assignment of tasks under the real-time OS is reflective of 
the separation and priority of the different and varied 
system activities.  The software enforces encapsulation by 
requiring module-to-module interaction only via public 
interfaces and the message based inter-process 
communication enforces this separation in the execution 
model. 
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