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THz astronomy from the ground is strongly
limited by the atmosphere opacity
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Better THz detectors are needed for space
spectroscopy

Photon Noise at Detector, W Hz "
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Other examples of the future missions are:
CMBPol (imaging photometry), SPECS (high-
resolution spectroscopy using interferometry)
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‘ Requires photon-counting detectors




The ultralow background calls for photon-
counting techniques at THz
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The photon statistics predicts
NEP, = hv(2N,)"2

The combination of the low
NEP and of the long
integration time cannot be
achieved with integrating
detectors => THz photon
counting

THz photons are extremely
difficult to detect => requires
new detectors with the single-
electron sensitivity or large
multiplication gain



An optimal photon counter

* Small minimum resolved energy
d¢ < hv

* Enough room to insert the threshold
0e < E; < hv, thatis, 6e << hv

t

* Not too slow dynamic range ~ !
Much better but not too fast dark current rate ~ !

* Photon-noise limited performance
NEP = hv(2Ny)'2
Ny is the photon arrival rate

t
discrimination
E; threshold

‘ Ideal (photon-noise limited)
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The superconducting hot-electron THz
calorimeter

A photon energy distributes

quickly between many electrons

=> large intrinsic gain
R N
Y

Thin (~10nm) disordered superconducting
film =>long t,_,, small C_

e-ph?

Low-T,=> long t,_,;,, small C, T=T7T e—ph(T’f)

Small (subp) lateral dimensions => small C,_
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Diffusion cooling vs phonon cooling

Low-T, transition-edge sensor Low-T, transition-edge sensor
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v and d¢ in the Ti photon counter
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Experimental <., data are from Gershenson et al.,
Appl. Phys. Lett. 2001

T = T.,,/20 due to the effect of the negative electro-
thermal feedback typical in transition-edge sensors
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« Titanium films magnetron sputtered on
sapphire substrates or e-beam
evaporated on Si

.

Thickness d =20-30 nm
Sheet resistance R =15-20 Q

Critical temperature T,=0.3-0.4 K
Electron diffusivity D =2.5 cm?/s

e t-data were extracted from the
measurements with large samples

« Device dimensions 0.5um x 0.15um x
0.03um have been already achieved

* 8¢ =170 GHz, BW = 80 kHz



Probability Density
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Photon statistics and NEP@1THz
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A subpm Ti photon-counter device

Ti: 0.45 pm X 0.17 pm R(T) via the noise thermometry
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Input detector circuit and readout

A 1 THz twin-slot antenna

~60 me

A 1000-pixel array is needed for SAFIR
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*« A SQUID readout will have an
sufficiently small noise and broad
bandwidth

*« Novel multiplexing solutions
based on SQUIDs or RSFQ will be
required



Conclusions

U A THz photon counter closely meeting the "ideal" photon detector
requirements can be made using a submicron size Ti hot-electron
superconducting calorimeter

[0 The detector would operate at 0.3 K (easy cryocooling in space)

[0 Superconducting Ti devices with Nb contacts have been fabricated and are

being tested
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