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THz astronomy from the ground is strongly
limited by the atmosphere opacity
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Better THz detectors are needed for space
spectroscopy

10-m mirror, 4K

Planck HFI

Single-Aperture FIR Observatory -- SAFIR

Other examples of the future missions are:
CMBPol (imaging photometry), SPECS (high-
resolution spectroscopy using interferometry)

1THz
Requires photon-counting detectors
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The ultralow background calls for photon-
counting techniques at THz

The photon statistics predicts
NEPγ = hν(2Nγ)1/2

The combination of the low
NEP and of the long
integration time cannot be
achieved with integrating
detectors => THz photon
counting

THz photons are extremely
difficult to detect => requires
new detectors with the single-
electron sensitivity or large
multiplication gain
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An optimal photon counter
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hν

detector noise

Bad

Much better

Ideal (photon-noise limited)

discrimination 
threshold

• Small minimum resolved energy
δε < hν

• Enough room to insert the threshold
 δε < ET < hν, that is, δε << hν

• Not too slow dynamic range ~ τ-1

but not too fast dark current rate ~ τ-1

• Photon-noise limited performance
 NEP = hν(2Nγ)1/2

 Nγ is the photon arrival rate

ET
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The superconducting hot-electron THz
calorimeter

e

ph

τ = τ e-ph(T,l)
δε ~ (kBTc2Ce)

Thin (~10nm) disordered superconducting
film => long τe-ph, small Ce

Low-Tc => long τe-ph, small Ce

Small (subµ) lateral dimensions => small Ce

R

TTc

A photon energy distributes
quickly between many electrons
=> large intrinsic gain
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Diffusion cooling vs phonon cooling

Low-Tc transition-edge sensor

εF

Au (antenna)Au (antenna)

L

ε q
p

Si, sapphire, or quartz)

Hot electrons diffuse into normal
contacts.

The relaxation time τdiff. ≈ L2/π2D in
subµ devices (10's ps) is too short to
keep the dark count rate low.

Nb

Low-Tc transition-edge sensor

εF

Nb
AntennaAntenna

ΔNb

L

ε q
p

Si, sapphire, or quartz)

Andreev contacts stop diffusion of
hot electrons.

The relaxation time is ~ τe-ph (1-10 µs
at 0.3 K). This turns out to be optimal
for achieving the "ideal" THz photon
counter conditions.
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τ and δε in the Ti photon counter

• Titanium films magnetron sputtered on
sapphire substrates or e-beam
evaporated on Si

•  Thickness                  d = 20-30 nm
   Sheet resistance        R  = 15-20 Ω
   Critical temperature   Tc = 0.3-0.4 K
   Electron diffusivity      D = 2.5 cm2/s

•  τ-data were extracted from the
measurements with large samples

•  Device dimensions 0.5µm × 0.15µm ×
0.03µm have been already achieved

• δε ≈ 170 GHz, BW ≈ 80 kHz
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Experimental τe-ph data are from Gershenson et al.,
Appl. Phys. Lett. 2001

τ ≈ τe-ph/20 due to the effect of the negative electro-
thermal feedback typical in transition-edge sensors
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Photon statistics and NEP@1THz
P

ro
ba

bi
lit

y 
D

en
si

ty

Energy h!E
T

"#

Probability of photon detection
(internal quantum efficiency)

Probability of dark 
counts

t

ET

! 

Pdet =
1

2"
# exp - x 2 2( )
(ET $h% ) &'

(

) dx

! 

P
dark

=
1

2"
# exp -x

2
2( )

ET $%

&

' dx

! 

NEP = h" 2P
dark
B

10-23

10-22

10-21

10-20

10-19

10-18

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N
E

P
 (

W
/H

z1
/2

)

P
d
e
t

E
T
/!"δε

hν



11
B.Karasik ISSTT05

A subµm Ti photon-counter device

NbNb

Ti: 0.45 µm x 0.17 µm
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A power of 0.1-0.3 fW saturates
the device => hard to use wired circuits
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Input detector circuit and readout

A 1 THz twin-slot antenna

~60 µm

• A SQUID readout will have an
sufficiently small noise and broad
bandwidth

• Novel multiplexing solutions
based on SQUIDs or RSFQ will be
required

0.2-1.0 Ω

A 1000-pixel array is needed for SAFIR
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Conclusions

   A THz photon counter closely meeting the "ideal" photon detector

requirements can be made using a submicron size Ti hot-electron

superconducting calorimeter

  The detector would operate at 0.3 K (easy cryocooling in space)

 Superconducting Ti devices with Nb contacts have been fabricated and are

being tested


