
CLARAty: Towards Standardized Abstractions and Interfaces  
for Robotic Systems 

Issa A.D. Nesnas 
nesnas@jpl.nasa.gov 

Jet Propulsion Laboratory, California Institute of Technology 
 

 
Context 
 
With the increasing intelligence and complexity of robotic systems, there is a need to both 
leverage working solutions and manage the rising complexity of highly capable robots.  In 
addition to building reusable hardware components, there is a growing need to build reusable 
software components for heterogeneous robots.  The different requirements of such systems make 
this proposition quite challenging.   
 
There are three primary reasons why reusing robotic software is difficult.  Taking a top-down 
approach, one encounters several challenges: 
 

1. Different categories and capabilities: One can categorize robotic systems along 
different axes.  One such axis can be based on their primary objective: e.g. surface 
exploration robots, excavation robots, construction robots, assembly robots, and so on.  
Another axis can be along their sensing/perceiving modalities.  A third can be along their 
mechanisms types which define their physical abilities.   
 
Even within a single category, robots can have different capabilities.  Consider a 
mechanism classification that identifies platforms as: wheeled, legged, or hybrid of the 
two.  There are different capabilities among wheeled vehicles.  Some are fully-steerable 
(omni-directional), others are partially-steerable (car-like Ackermann steering), while 
others are skid-steerable.  Such capabilities determine the types of maneuvers a vehicle 
can support.  For example, a fully-steerable vehicle can crab while a skid-steerable 
vehicle simply cannot. 
 

2. Different architectures:  Even with systems that have identical physical and sensor 
configurations, they can have different control and computation architectures.  Control 
systems can be configured in different ways. One approach is to move the controls as 
much as possible to software implemented on the central processor keeping the 
communication and hardware to a minimum.   The other end of the spectrum is to move 
as much of the computation out to distributed processors.   Different combinations have 
different pros and cons for motion and sensor control and processing.  

  
In addition to these top down challenges, there are several challenges associated with a bottom-up 
approach.   In a bottom-up approach, one can look at the various constituents of a robotic system.  
Central to any robotic system is the mechanism that is comprised of bodies connected by different 
joints.  Joints have different types and may be passive or actuated.  Actuated joints are generally 
controlled by motors with feedback sensors.  Sensors for robots usually include articulation 
sensors (encoders and potentiometers), tactile sensors of various types (digital/analog inputs), 
force sensors (digital/analog inputs), visual sensors (cameras, stereo pairs, and laser scanners), 
and inertial sensors (gyroscopes, accelerometers, and inertial measurement units).  One can 
develop abstractions for these various components and build higher-level abstractions using these 
basic units.   The primary challenge with this bottom-up approach again is the variation in 
technologies and capabilities of various actuators and sensors.   Such devices from various 



vendors not only have different signal qualities, but operate in different modes which lead to 
software implementations that are hardware specific.  For example, some motor controller only 
support velocity control modes while other can support position and velocity control modes. 
Cameras can come as either analog units with framegrabbers or as digital units on a single bus.  
These cameras have different capabilities for continuous image acquisition and synchronization.  
Nevertheless, to the robot, a motor actuates a joint, a camera acquires an image, and a stereo pair 
acquires synchronized images.  The implementation details, while important, will vary across 
implementations.  But abstracting these devices properly will lead to a more general and 
interoperable implementation of software without losing the advantages of the hardware. 
Extending these abstractions is necessary to support full hardware capabilities. 
 
Using both a top-down and a bottom-up approach, one may develop and evolve various 
abstractions, components, standardized messages and interfaces to capture the common themes 
and behaviors across components and systems.   One may choose a particular domain within the 
vast robotic discipline to study, analyze, prototype, implement, learn, and iterate.  Forum such as 
this workshop enable the dissemination and sharing of the learned experience in an attempt 
towards reaching a common ground.   
 
 
Problem 
 
To readily deploy algorithms on various robotic platforms, algorithms must be designed 
independent of the implementation details of their host platforms.  Because platforms have 
different hardware architectures, robotic software must be able to adjust the level of abstraction at 
which it interfaces to hardware.  Adjusting the level of the interface will also enable interfacing 
with simulations that have different levels of fidelity. 
 
There is a need for a framework to host many algorithms that have been developed from 
generalized theories in robotics.  Many existing point solutions can be expressed using more 
general constraints to support a larger set of applications.  The framework will need to support 
interfaces to various robotic hardware and simulation platforms.   
 
 
Forces 
 

 To provide a framework to host robotic algorithms that can be generalized to a number of 
applications. 

 To provide an extendible approach that enables the overriding of generic capabilities with 
specific algorithms targeted for a given configuration or platform. 

 To enable comparison of various components in a system.  A breakdown of algorithms 
into functional components enables the validation and comparison of various components 
against others without changing the entire software base. 

 To maintain efficiency and simplicity in the implementation and provide a system that is 
maintainable across many deployments.  Generalizing an implementation introduces a 
level of complexity. 

 To access and reason about system state at various levels of abstraction. 
 To support different architectures for control and computations ranging from centralized 

software-driven to distributed hardware-driven where the nodes perform significant 
processing. 

 To interface with various robotic deployments. 
 To seamlessly migrate between real and simulated robots 



 To use algorithms in prediction mode to support “what if” planning scenarios. 
 
 
Solution 
 
The robotic software must develop abstractions that separate intent of an action from its 
implementation.  To support systems that can migrate functionality to hardware and to support 
various fidelity simulations, these abstractions must exist at various levels of the system 
granularity.   Not only will this encapsulate implementation detail, it will help reduce the 
complexity of robotic software by providing levels of abstraction.    
 
The abstractions must represent both physical as well as functional components of the system.  
Physical abstractions are necessary to support different hardware devices.  Functional abstractions 
are necessary for two reasons: (i) to support various implementations of a given algorithm, and 
(ii) to support the processing of an algorithm elsewhere in a distributed system.  Physical 
abstractions include controlled motors, input and output channels (digital and analog), cameras, 
stereo cameras, inertial measurement units, laser scanners, arms, locomotors, pan/tilt units, and so 
on.   Functional abstractions include terrain analyzers, visual trackers, stereo processors, path 
planners, trajectory generators, and so on.   
 
It is necessary to have a central model to handle information about the properties of the 
mechanism(s).  At a minimum, the model will need kinematic properties but can also include 
dynamic and geometric properties.  Geometric properties are included for collision detection and 
graphical displays.  Handling this information centrally keeps the model information consistent, 
reduces duplication in the implementation, and allows for generic algorithms for kinematic 
computations.  While general kinematic solutions have many advantages, provisions to support 
optimized custom solutions are also necessary. 
 
In addition to physical and functional abstractions, we also have to provide abstractions for 
threads, time, and measurements.  Robotic systems often run multiple concurrent threads.  To 
deploy a generic multi-threaded algorithm on various systems, it is important to decouple the run-
time model of the algorithm from the run-time model that is specific to a robotic platform.   To 
support running with both simulated and real robots, the interface to system time has to also use a 
clock abstraction since simulations can run time at faster rates.  Measurement abstractions are 
useful for holding time stamps and uncertainty information. 
 
Within the class of mobile robot that carry various appendages and instruments, we found many 
common themes around which we build a framework to generalize robotic capabilities.  We have 
studied at some length two capabilities: (i) robot navigation and obstacle avoidance in rough 
outdoor terrain, and (ii) tracking and placing instruments mounted on mobile robots at targets 
designated from a distance.  To implement these two capabilities on the NASA research rovers, 
we had to develop generalized components that interacted with each other in complex patterns 
and with various system adaptations.  
 
Funded by NASA’s Mars Technology Program, and in collaboration with NASA Ames Research 
Center, Carnegie Mellon, and University of Minnesota, JPL has designed, implemented, 
deployed, and tested CLARAty (Coupled Layer Architecture for Robotic Autonomy) on a 
number of robotic research platforms [1]. 
 
CLARAty provides two layers for the development of robotic software: the Decision Layer and 
the Functional Layer.  The Decision Layer uses a model-based declarative approach to describe 



the high-level activities and their constraints.  Using a search engine, a plan is generated that 
properly orders the activities based on the mission goals and system constraints.  A schedule is 
generated from this plan and then executed by sending goal to the Functional Layer.  The 
Functional Layer is a set of abstractions at various levels of granularity that can support different 
implementations of functional algorithms.  It can also be adapted at various levels to real or 
simulated hardware components.   

[1]  I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, "CLARAty and Challenges 
of Developing Interoperable Robotic Software," invited to International Conference on 
Intelligent Robots and Systems (IROS), Nevada, October 2003. (410 KB)  

https://claraty.jpl.nasa.gov/new_site/overview/publications/03_nesnas_challenges_iros.pdf
https://claraty.jpl.nasa.gov/new_site/overview/publications/03_nesnas_challenges_iros.pdf

	Context
	Problem
	Forces
	Solution

