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ABSTRACT 
 
The direct detection at visible wavelengths of Earth-like planets around nearby stars requires starlight suppression by a 
factor of 1010 – 1011 at offsets of order 100 mas. It has been shown that perfect suppression is possible in principle, using 
a combination of a band-limited focal plane coronagraphic mask and a pupil plane Lyot stop. Errors in the transmission 
amplitude and phase of the mask degrade the performance. These errors can be corrected completely at a given 
wavelength and polarization using deformable mirrors (DMs) operating in the pupil plane of the system. Both the errors 
and correction have different chromatic dependences, however, and the DM correction becomes ineffective as the optical 
bandwidth is increased. 
 
The mask errors can be divided into 2 classes: (1) errors that are uncorrelated with the mask pattern, arising, for 
example, from the surface roughness of the mask substrate, and (2) errors that are correlated with the mask pattern. We 
present the results of analysis of random errors and simulate the effects of systematic errors using specific mask designs. 
In both cases we find that the contrast required by TPF-C imposes very challenging demands on the design and 
fabrication of the masks. Several potential mitigation approaches are discussed. 
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1. INTRODUCTION 
As part of its Origins theme, NASA is funding the development of a space mission capable of directly detecting and 
characterizing the starlight reflected from earth-like planets around nearby stars.  The Terrestrial Planet Finder 
Coronagraph1 (TPF-C) is a high-precision, ultra-stable, large aperture, visible wavelength telescope with a starlight 
suppression system2 (SSS) that blocks the starlight while passing the planet light to a filter bank or spectrograph. It is 
scheduled for launch in the next decade. 
 
The SSS relies on a band-limited coronagraph3 to remove diffracted starlight before it can reach the image plane. The 
coronagraph is based on the early designs of Lyot4, but the mask employed has a band limited Fourier Transform that 
(ideally) diffracts the starlight into a finite region where it is identically removed by a hard-edged Lyot stop.  There are 
several variations of these masks; most recently, Kuchner, Crepp, and Ge introduced the 8th-order mask5 with greatly 
reduced sensitivity to low-order aberrations compared to the earlier 4th-order masks6,7. 
 
The SSS also requires a pair of high-density deformable mirrors (DMs) to flatten the phase and amplitude of the wave 
front as it enters the coronagraph.  The DMs are capable of perfectly correcting a monochromatic wave front over a 
range of spatial frequencies up to the Nyquist limit set by the number of actuators.  The DMs can also be used to 
compensate for mask transmission errors. Trauger et al have demonstrated high-contrast imaging approaching the TPF-C 
requirements in laser light using a band-limited mask and a 32 x 32 actuator DM8.   
 
A transmission error requirement based on first-order analysis of random mask error, has been defined in the TPF-C 
error budget9. In this paper we study how mask design and the physics of mask transmission over a broad optical band 
affect the coronagraph performance. The next section derives the relationships connecting the number of leakage 
photons in the image plane to the transmission errors in the mask. In Section 3 we derive a requirement on phase errors 
that are uncorrelated with the mask pattern, which includes the surface roughness of the transparent mask substrate that 
may be present. In Section 4 we study binary masks, performing detailed modeling of the transmission to account for 
electromagnetic boundary conditions and waveguiding effects. We then simulate how well a pair of DMs can correct for 
these non-ideal effects over a finite bandwidth, and determine the limiting contrast that can be reached. The results are 
summarized in Section 5. 
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2. MASK ERROR ANALYSIS 

The electric field incident on the mask at the center wavelength of the band λc, uncorrected by the deformable mirrors, is 
given by 

 ( ) ( ) ( ) ( )0uncorE E M L= ∗x x x x , (1) 

where E0 is the point spread function for the input aperture (a sombrero function for the case of a circular aperture), M is 
the mask transmission function, and L is the point spread function for the Lyot mask. The * represents convolution and x 
is a vector representing angular offset in the image plane with units of λc /Din, where Din is the diameter of the input 
aperture. The complex mask transmission is a superposition of the ideal mask and the errors: 

 ( ) ( ) ( )0M M M= + Δx x x , (2) 

and can include both amplitude and phase effects. Substituting into Eq. (1), 
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The term including the ideal mask transmission M0 is identically zero for a band-limited mask and suitably sized Lyot 
stop3. To generalize to arbitrary wavelength, we simply scale the point spread functions for the input aperture and Lyot 
stop by the ratio of the wavelengths: 

 ( ) [ ]( ) ( ){ } [ ]( )0, ,uncor c cE E M Lλ λ λ λ λ= Δ ∗x x x λ x . (4) 

A system of deformable mirrors (DMs) corrects exactly for the electric field at the center wavelength λc: 

 ( ) ( ) ( ) ( ){ } ( )0, , ,DM c uncor c cE E E Mλ λ λ= = Δ ∗x x x x L x  (5) 

The E-field introduced by the DMs can again be scaled to different wavelengths. Since the chromatic dependence of the 
DM correction is different for amplitude and phase errors, we must partition the mask errors accordingly:  
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The ‘DM-corrected’ electric field in the image plane is now given by 
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The number of photons scattered into the image plane by the mask error, as fraction of the number that would have 
arrived with the mask removed is  

 ( ) [ ]( ) [ ]( ) 22
1 1 0 1 1, *cor c cN E dx dx E L dx dxλ λ λ λ λ= ∫∫ ∫∫x x x , (8) 

where (x1, x2) are the components of x. This expression, together with Eq. (7), is generally applicable to the problem of 
mask errors. The specific example given in the next section will highlight the different aspects of these equations. Note 



that N does not yet represent the image contrast, which is the number of photons per speckle patch in the image. This 
will be addressed in the next section. 
  

3. UNCORRELATED SUBSTRATE ERRORS 
We now proceed to make assumptions and approximations to derive an estimate for a specific type of mask error: 
random phase errors in the mask substrate, uncorrelated with the mask pattern. 
 
The input aperture is assumed to be elliptical, with major diameter Din = 8 m, and a minor diameter of 4 m. The input 
point spread function is proportional to a stretched sombrero function 
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The Lyot stop is assumed to be circular, with a diameter Dlyot = 4 m 
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In each case, x1 and x2 are in units of λc /Din. The center wavelength λc = 550 nm. Since we are considering phase errors 
in the mask 

 ( ) ( ) ( ) ( )M M i iφ φ φΔ ≈ Δ ≈ Δx x x x . (11) 

For simplicity, we have assumed that the mask transmission is approximately unity in the region of the phase error. This 
assumption will not have a big impact on the final result, and avoids tying the requirement to a specific mask shape. The 
phase error is represented by a circularly-symmetric Gaussian with peak of α radians at λ0, centered on x0, with full-
width-to-half-maximum of F: 
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For a bump in the surface with height Δs of a transparent mask substrate material with refractive index n, the peak phase 
error is given by α = 2πnΔs/λc. Figure 1 shows the amplitude of the electric field along the x1-axis (i.e. the high-
resolution direction in the image plane corresponding to the long axis of the primary mirror) for the monochromatic case 
at λc = 550 nm. The units of the x1 axis in the plot are radians, and the Gaussian is centered at an offset of 4λc/Din with F 
= 0.5 (units: λc/Din).  
 
Figure 2 adds a second wavelength, λ = 510 nm. Whereas the mask error is centered near to a minimum of the 550 nm 
sombrero, it is close to a zero crossing at 510 nm, and the resulting products are quite different for the two cases, both 
before (Fig. 2b) and after (Fig. 2c) convolution with the Lyot response. Since the DM correction is based on the 550 nm 
center wavelength, it is wholly inappropriate for 510 nm (Fig. 2c long dashed line).  
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Figure 1: (a) A profile of the incident electric field amplitude at 
the mask, and a Gaussian error in the mask transmission phase. 
(b) The product of the two gives the error component of the 
electric field. (c) Resulting profile of the electric field in the 
focal plane after passing through the Lyot stop. 

Figure 2: (a) Profiles of the incident electric field at the 
mask for two different wavelengths. (b) The products are 
quite different. (c) Deformable mirrors correct for the error 
in the focal plane at 550 nm, but increase the error at 510 
nm. 

A simple MatLab calculation was used to determine the number of scattered photons N1, as a fraction of the number that 
would be obtained without the mask present,  for a single Gaussian bump with α = 1, as a function of the angular offset 
of the bump |x0| and the bump width F. The code simulates an optical bandwidth of 500-600 nm by averaging the results 
obtained for wavelengths of 510, 530, 550, 570 and 590 nm.  
 
For a more meaningful comparison which compensates for the relative size of the bumps, we first normalize the numbers 
to a common surface rms roughness. To do this, we create a surface profile from a regular grid of Gaussian bumps, each 
with diameter F, spaced by F, and with random peak amplitude drawn from a normal distribution with rms σα. It can be 
shown that the surface rms roughness is srms = 0.75 σα λc / 2πn. The expected value of the rms number of photons per 
bump (averaged over the distribution of possible amplitudes) is given by  
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The square root of 3 comes from the 4th moment of a Gaussian distribution (the variance in the photon rate is 
proportional to α4). Since the spacing F of the bumps is in units of λc/Din, and the speckle area in the image plane is 
given by (λc/Dlyot)2, then the number of bumps per speckle is (Din /FDlyot)2. We can then convert to photons per speckle 
(relative to the case without the mask) and obtain the contrast: 
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The factor of 2 accounts for the two surfaces that are present on any transmissive substrate. Table 1 shows the contrast 
obtained for a range of offsets |x0| and bump widths F, and assuming a substrate refractive index n = 1.5 (appropriate for 
Silica). The surface rms has been normalized to 50 pm in each case. Two competing effects underlie the dependence on 
offset angle: (1) the point spread function from the input aperture is increasing rapidly at small offsets from the star; (2) 

the relative shift between the point spread 
functions at two different wavelengths increases 
linearly with angular offset from the star (see 
Fig. 2a). In the scenario evaluated here, the 
former effect is dominant, and the contrast 
deteriorates close to the star. Table 1 also shows 
that the scale size of the mask errors is important. 
First consider the effect of a very narrow 
Gaussian (small F) in Fig. 2. The product E0ΔM 
(within the curly braces of Eq. (7), and shown in 

Fig. 2b) is dominated by high spatial frequencies that are blocked by the Lyot stop (i.e. ‘smeared’ out in the convolution 
process). A broad Gaussian (high F) spans a similar region of sidelobes for the point spread function at two different 
wavelengths and the DM correction becomes more effective (the term within the square braces of Eq. (7) is small). It is 
the intermediate spatial scales – those comparable to the width of the diffraction ring of the input point spread function – 
that have the largest impact on the contrast.  

 
Table 1: Surface rms required for contrast of 10-11

 
Spatial scale of mask error, F (units λc / Din)  

0.125 0.25 0.5 1 2 
3 13 pm 6 pm  5 pm 7 pm 23 pm 
4 12 pm 7 pm 6 pm 9 pm 27 pm 
5 17 pm 8 pm 7 pm 10 pm 30 pm 

|x0| 
(units 
λc/Din) 10 28 pm 13 pm 11 pm 15 pm 45 pm 

 
We can also use the ‘grid of Gaussian 
bumps’ model to derive a requirement 
on the power spectrum of the surface 
roughness, as illustrated in Fig. 3. Each 
curve on the plot represents the power 
spectral density (PSD) of substrate 
surface height for one value of the 
bump width and spacing F. The cases 
with broad bumps contain no power at 
high spatial frequencies and roll off at a 
spatial frequency proportional to F-1. 
Each of the 5 spatial scales (i.e. set of 
Gaussian bumps of a particular size) 
have been allocated a contrast 
contribution of 10-11, and Eq. (14) was 
applied to calculate the corresponding 
value of srms, which in turn determines 
the vertical normalization of each PSD. 
The sum of the PSDs gives the net 
requirement on the surface; a surface 
matching this PSD will give a contrast 
of 5 x 10-11. The shape is somewhat 
flexible, since we are free to reallocate 
to the desired total contrast to the 
separate spatial scales. There is no 
requirement on the surface for spatial 
frequencies higher than 1 cycle per 
fλ/Din, since the scattered light is blocked entirely by the Lyot stop. 
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Figure 3: Power spectral densities for Gaussian mask errors with different spatial 
scales. The surface rms allocated to each curve results in a contrast contribution of 
10-11. Spatial frequencies higher than 1 cycle per fλ/Din do not impact the contrast. 
The spatial periods shown at the top apply to the case where f / Din = 60 and λ = 550 
nm. 



We now compare the derived requirement for 
the substrate surface rms to values that have 
been obtained in practice. We assume that the 
TPF-C optical system has f / Din = 60, for which 
the spatial scales of interest have periods of 
33 μm or more (see Fig. 3). These are larger 
scales than are typically studied. Weis 
demonstrated superpolishing of sapphire with an 
rms of 70 pm for scales between 12.5 μm and 
500 μm10. Figure 4 shows data from Duparre 
and Jakobs for three substrates11. The TPF-C 
mask requirement has been overlaid, but lies at 
larger spatial scales than the measured data. 
Both cases indicate that the TPF-C mask 
requirement is close to the limit of what has 
been achieved, but further study will be 
necessary to establish whether a technology 
development effort is needed. 

Crystalline
Silicon

Glass

Fused
silica

 
Figure 4: Surface roughness PSDs measured by Duparre and Jakobs for 
three substrates. The TPF-C mask requirement from Fig. 3 has been scaled 
to match the units of the plot and overlaid in the upper left corner.  

 
4. CORRELATED ERRORS: SIMULATION OF A BINARY MASK 

In this section we describe simulations of mask errors that are correlated with the mask pattern, specifically the wave-
guiding effects that are obtained in metallic binary masks. The mask design is described, followed by a description of the 
electromagnetic propagation effects and how they are modeled. We simulate the impact of these errors on the image-
plane contrast and show the extent to which they can be corrected over a finite bandwidth. 
 

4.1. Binary mask design 

Occulting focal plane masks operate in conjunction with a Lyot stop to eliminate the starlight in a coronagraphic 
telescope. Band-limited masks make possible complete cancellation of the starlight in the ideal case12. Examples are  
Sin2 and 1-Sinc2 masks, or an ‘8th order’ function5. They may be implemented in either ‘analog’ or ‘binary’ forms. 
Analog masks are fabricated with a continually varying, graded transmission pattern. Binary masks achieve the same 
result with a series of transparent windows in an otherwise opaque substrate. 
 
Realization of an arbitrary one-dimensional voltage transmission function, T(x), using a binary (on/off) structure can be 
considered as a two step process. As a first step the function is sampled in the non-search ‘y’ direction at a rate sufficient 
to guarantee that any higher-order diffracted terms generated by this process will strike the opaque parts of the Lyot stop. 
This requirement specifies the minimum sample spacing in ‘y’ at F#*λ. Next, within each of these y-segments the 
transmission profile in ‘x’ must be generated. For the zero-order diffracted wave (in y) at a given x-position the 
transmission coefficient is the average value (DC value) of the transmission coefficient over the y-period. In the case of 
a binary mask this is simply the ratio of the opening size to the period. Transmission coefficients for the higher-order y-
diffracted waves will also exist, and will in general be different from those of the zero order wave. These waves, and 
hence their transmission coefficients, are not of concern since they will be intercepted by the Lyot stop.  If we denote the 
period as Py, and the height of the conductor as ‘h(x)’, then the gap is given by Py-h(x).  The voltage transmission 
coefficient for the zero order diffracted wave at a given position ‘x’ is then T(x)=[Py-h(x)]/Py. It should be noted that the 
total power transmitted by the gap is also given by =[Py-h(x)]/Py. The power  transmitted by the zero-order wave is 
T2(x)=[Py-h(x)]2/Py

2. The remainder of the transmitted power is contained in the higher-order diffracted waves. A large 
scale view of an example 8th order binary mask is depicted in Fig. 5a, with a more detailed view (not to scale) in Fig. 5b. 
 



  

Figure 5: A typical 8th order binary mask, (a), and detailed view (b). 

(b) (a) 

 
4.2. Vector Electromagnetic Effects 

The Fourier optics analysis of the mask, on which the design is based, assumes that the metal portions of the mask are 
totally opaque. In practice any layer of material of finite thickness, even a metal, will transmit at some level. For 
aluminum, which is the material that was actually used to create the mask the layer thickness was specified to be 0.200 
μm, which guarantees a leakage level of at least 10-10 over the (0.5-0.8 μm) wavelength band of interest. This thickness 
is far from negligible at the wavelengths of operation and has a significant impact on the mask’s transmission properties 
when vector electromagnetic effects and polarization are considered. A second consideration is that no polarization 
effects are included in the Fourier optics analysis, and it is assumed that the mask is ideal and behaves identically for 
incident fields of any polarization. 
 
Figure 6 depicts a number of electromagnetic effects that are ignored in the Fourier optics analysis of apertures in thick 
screens. The most significant effect that occurs as radiation passes through the aperture is that the field must satisfy the 
boundary conditions on the aperture wall as it passes through. The allowable field configurations that satisfy these 
boundary conditions are the modes of an infinite waveguide with cross section equal to that of the aperture. As shown in 
the figure these modes are excited at the input side of the aperture, propagate through the aperture, and then radiate at the 
aperture’s output side. Each mode will experience some reflection at the output side of the aperture, resulting in a 
backward wave in the aperture. This can lead to resonant effects. The speed of propagation of each of the possible 
waveguide modes is different, and depends on the wavelength of operation as well as the aperture cross section. Even in 
the absence of reflection at the waveguide output the difference in propagation constants will cause the phase of the 
output field to vary across the aperture. The amplitude of the field in the aperture will also be modified, with cross-

polarized components added in order to 
satisfy the boundary conditions on the 
aperture walls. The excitation coefficients 
of the modes as well as their propagation 
through the aperture are both a function 
of wavelength and the profile and 
polarization of the incident field, in 
violation of the Fourier optics 
approximation. In general small-scale 
features in the aperture shape are most 
affected by propagation through the thick 
aperture.  
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Figure 6. Vector electromagnetic effects in thick conducting screens. 

 
 



Although the structures making up the binary masks 
under consideration here are periodic in one 
dimension their non-periodicity in the ‘x’ dimension 
precludes their exact electromagnetic analysis. The 
problem is simply beyond that of existing numerical 
methods and computing power. Instead an 
approximate analysis technique is adopted where the 
solution to a tractable canonical problem is used to 
determine local approximation to the transmission 
coefficient at any point on the mask. This problem is 
chosen to include the thickness of the metal layer as 
well as polarization effects.  For the binary masks 
considered here the appropriate canonical problem is 
the thick periodic grating.  In order to simulate the 
first-order vector electromagnetic effects in a binary 
mask we compute the x-dependent transmission 

coefficient of this mask assuming it behaves locally as a thick strip grating.  The transmission coefficient is determined 
for each of the two possible polarizations of incident field at each location on the binary mask by solving the appropriate 
‘local’ strip grating problem as described below. This canonical problem in turn takes into account grating period, local 
gap dimension, and thickness. 
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Figure 7. A perfectly conducting, thick, strip grating. 

 
Figure 7 depicts the geometry of the thick strip grating. The grating is periodic in ‘y’, infinite in ‘x’ and the perfectly 
conducting strips have finite thickness in the ‘z’ direction. In the present implementation of the analysis code the strips 
exist with an arbitrary number of  dielectric layers on each side. The problem is solved by assuming an appropriate set of 
expansion functions for the vector electromagnetic field in each region and solving for the magnitude of these expansion 
functions by matching the tangential electric fields over the surfaces in common to the various regions. For the regions 
behind and in front of the strip grating the field is represented as a series of vector Floquet modes. The modes in the set 
satisfy the periodicity condition, and the set includes both forward and backward traveling TEz (Transverse Electric to 
‘z’) and TMz (Transverse Magnetic to ‘z’) modes. Between the strips the field is expanded as a set of parallel plate 
waveguide modes. These modes satisfy the Etan=0 condition on the strips and the set includes both forward and 
backward traveling TEz and TMz modes. The periodicity and thickness of the mask are appropriate for the TPF-C 
application, but are somewhat flexible.  
 

      
Figure 8: Perturbations in the phase and amplitude transmission of a binary mask introduced by electromagnetic waveguiding effects. 
The E-field is in the vertical direction in Figs. 5 and 7. Each plot has 9 curves, corresponding to wavelengths of 510, 520,..590 nm.  

Figure 8 shows an example of the perturbations in phase and amplitude as a function of the gap size for the 
perpendicular polarization (E field perpendicular to the strip direction). Each plot has 9 curves spanning the wavelength 
range 510 to 590 nm in 10 nm increments. The amplitude plot has been normalized to show the amplitude error as a 



fraction of the desired value; at a gap/period ratio of 0.04, for example, the actual transmitted amplitude is 1.02 times 
higher than the desired value. Both amplitude and phase show oscillatory behavior, reflecting resonances in the 
propagation through the metallic mask structure. As expected, the perturbations are largest for the smallest gap sizes 
which will be found at offsets close to the star (Fig. 5). The parallel polarization shows similar structure, but the 
perturbations are ~5 times larger in both amplitude and phase. This is consistent with the more stringent boundary 
conditions that are imposed by the metallic strips on the parallel polarization than the perpendicular polarization. 
However, the mask of Fig. 5 is likely to exhibit more adverse behavior for the perpendicular polarization than is 
suggested from the parallel strip data of Fig. 8, since the edges of the openings are not horizontal and in general will not 
be perpendicular to the E field. It may be necessary to implement the mask as a ‘blocked’ structure in which the 
windows open out in a series of steps as we move away from the center. The simulations of the following sections are 
based on the parallel strip approximation. 
 

4.3. Controlling waveguide induced binary mask errors 

 
Figure 9: Schematic of the two deformable mirror 
wavefront control system.  The DMs are arranged in a 
Michelson interferometer configuration to enable control 
over both amplitude and phase irregularities. 

While coronagraphs suppress the diffracted starlight, the 
discovery space for exosolar planet searches is ultimately defined 
by the wavefront control (WFC) system.  Coherent scattered 
starlight from the optical aberrations as well as errors induced by 
coronagraph elements persist over the field of view (FOV).  The 
ultimate ability to suppress this scattered light is dependent upon 
how well matched the WFC system correction is to the error that 
need compensation.  The correction must both have the right 
spatial distribution over the pupil as well as match chromatic 
scaling behavior to guarantee high contrast over a reasonable 
optical bandwidth.  In this section section we examine the 
limitations to the correctablity of waveguide induced binary mask 
error over an optical bandwidth. 
 
To permit the largest possible discovery space, the baseline WFC system for TPF uses two deformable mirrors (DM) in 
a Michelson interferometer arrangement.  Figure 9 shows a schematic of the baseline configuration. By splitting the 
beam and applying an independent correction in each arm, both amplitude and phase irregularities in the pupil may be 
fully addressed13.  For a given input complex pupil Pin(u,v;λ), the output beam is described by 

 ( ) ( )1
1 12 2( , ; ) ( , ; ) exp ( , ) exp ( , )
2 2out in

j jP u v P u v opd u v opd u vπ πλ λ λ λ 2
⎡ ⎤= +⎢ ⎥⎣ ⎦

, (15) 

where opd1(u,v) and opd2(u,v) are optical path difference (OPD) distributions on each arm of the interferometer. The 
pupil is corrected by setting the OPD distributions in each arm as 

 , (16) 
opd1(u, v) = opdφ (u, v) + opda (u, v)
opd2 (u, v) = opdφ (u, v) − opda (u, v)

where 

 
( )

( )( )

1 1( , ) cos ( , ; )
2

( , ) , ;
2

a in

in

opd u v P u v

opd u v arg P u vφ

λ λ
π
λ λ
π

− −=

=
. (17) 

While this scheme perfectly corrects the complex pupil at one wavelength, the scaling law for the amplitude at phase 
may not be ideally match to the types of errors that may be encountered.  The induced phase scales as 1/λ; a typical path 
difference correction. This is generally matched to other OPD errors caused by traditional optical aberrations.  The 
amplitude compensation scales as 1/λ2. As we will see, neither is matched to the chromatic dependence of the binary 
mask transmission. 



 
4.4. Monochromatic optimization of the wavefront control systen 

Because waveguide induced errors occur at the 
occulting mask in the focal plane, we cannot simply 
minimized the complex pupil errors.  Instead we took 
an approach to minimize the complex field in the focal 
plane a wavelength of interest.  In practice, the 
complex field is not measured directly and must be 
estimated through a sequence of intensity 
measurements in the presence of some known phase 
diversity8,14-16.   Although unfair, using the true 
complex pupil permits to derive ideal control states and 
study the chromatic nature of the correction.   
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at λ=550nm

Post-Compensated Contrast
at λ=550nm

 
Figure 10: Monochromatic contrast over the field of view is shown 
at λ=550nm.  The top row shows the contrast before (left) and after 
(right) the compensation of the binary mask error induced by 
perpendicular polarized light.  The bottom row is the same, but for 
parallel polarized light.  
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Pupil Correction Needed at λ=550nm Michelson I/F DM Correction

 
Figure 11: Monochromatic correction required at λ=550nm to 
achieve high contrast in the field of view is shown  The top row 
shows the pupil compensation needed in the presence of 
perpendicular polarized light.  The amplitude and phase of the 
pupil-plane compensation are shown on the right while the DM 
surface shapes needed to achieve that compensation are shown on 
the left. The bottom row is the same, but for parallel polarized light. 

 
In Fig. 10, we show contrast over the field of view in 
the case where the only errors in the system are caused 
by waveguide effects at the binary occulter.  The top 
row shows the contrast before and after compensation 
by the WFC system in that case where the incident 
light was perpendicularly polarized. The mask error 
compensation is achieved assuming that we have two 
96x96 actuator DMs in the WFC system. The bottom 
row shows the same but for parallel-polarized light.  
Here, the induced errors are substantially worse but 
nonetheless correctable monochromatically. In Fig. 11, 
the required complex-pupil compensation to achieve 
high contrast is shown along with the DM surface 
shapes used by the WFC system to affect this control. 
 

4.5. Chromatic limitations of compensation 

With the monochromatically optimized control state 
established, we can now examine the limitations 
brought fourth in broadband light.  In Fig. 12, we show 
the RMS error of the correction need as a function of 
wavelength and polarization. These curves are labeled 
as “Uncompensated” errors.  In general terms, the 
required phase and amplitude compensation increase in 
magnitude as the wavelength increases.  The 
waveguide induced errors become more severe as the 
fixed binary mask features appear smaller to the longer 
wavelength light.  Aside from the uncompensated 
phase and amplitude RMS curves, there are the post-
correction phase and amplitude RMS curves.  These 
curves reveal the mismatch between a correction 
established at λ=550nm and the required compensation 
needed at other wavelengths.  Because we apply a 
global average zero-path-difference constraint after the 
control optimization, we do realize perfect amplitude 
correction even at λ=550nm.  Although this 
compromises the monochromatic optimality of the 
solution, we feel that this step helps to achromatize the 
control state. 
 



 
Figure 12: The RMS error in the pupil is shown before and after compensation with the DM pair.  The uncompensated error represents 
the required pupil-domain correction needed to achieve high contrast as a function of wavelength.  The residual errors depict how 
effectively the DM-based corrections compensates the make errors over a bandwidth when the surface shapes at set to correct at 
λ=550nm. Note the y-axis scale difference between the two plots. 

 
Figure 13 shows how the contrast over the FOV degrades as the optical bandwidth increases. At a 0% optical bandwidth 
we have our monochromatically optimized dark-hole.  As the bandwidth increases the mismatched compensation 
permits more starlight to leak into the FOV.   This is well illustrated by Fig. 14.  Here we show the contrast at the 4 λ/D 
field point degrades with increasing optical bandwidth.  These plots reveal that by maintaining perpendicularly polarized 
light to be incident upon a binary occulter, we may find a suitable mask design to achieve TPF requirements over a 
significant bandwidth. 
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Figure 13: The contrast over the field of view after correction is shown.  From left to right, the top row shows the post-correction 
contrast over 0%, 5%, 10% and 15% bandpasses about λ=550nm in the presence of perpendicular polarized light. The bottom row is 
the same, but for parallel polarized light. 



 
4.6. Aberration sensitivity in the presence of 

compensated binary mask errors 

 
Figure 14: Contrast at 4 λ/D is shown as a function of optical 
bandwidth.  The control state is established at the central 
wavelength (λ=550nm). At other wavelengths, this correction is 
less effective and contrast degrades. Further iteration of the 
wavefront control could be used to improve the contrast for the 
first two points of each solid curve.  

One last aspect to explore is the impact that mask errors 
have upon aberration sensitivity.  In our previous work 
we have shown the importance of selecting coronagraph 
designs that have low aberration sensitivity6,7,17.   In Fig. 
15 we show how the sensitivity of a Lyot coronagraph 
with an 8th order mask behaves when the occulter possess 
waveguide-induced mask errors.  These sensitivity curves 
are computed as the absolute change in contrast for the 
when a particular aberration introduced in the entrance 
pupil wavefront.  Also shown are curves for the ideal 8th 
order mask. 
 
Clearly, there are significant interactions of the aberration 
change with the static mask error that result in sensitivity 
curves.  The presence of mask errors largely negates the 
8th order mask’s insensitivity to low order aberrations. 
We plot the absolute change in contrast because the 
stability of the residual stellar light is central to the planet 
detection problem.  Only when the aberration level 
becomes large do we see that the curve follow the ideal 
8th order mask sensitivity curves.  While the ideal 8th 
order masks simulations contained no occulter errors, 
there is a numerical noise that biases the sensitivities at 
the 10-13 contrast level.  

 
4.7. Mitigation strategies 

Figure 14 shows that for a bandwidth of 500 – 600 nm the wave-guiding effects for the binary mask considered here 
limit the contrast at 4λ/D to ~10-9 and >10-8 for the perpendicular and parallel polarization states, respectively. The 
current requirement9 on contrast for TPF-C is 6 x 10-11, of which mask errors are but one contributor. Meeting this 
requirement with a binary mask will clearly be a challenge, and we now discuss some of the possible strategies that 
might be employed. 
 
Decreasing the optical bandwidth. From Fig. 14 we see that the fractional bandwidth must be reduced to ~0.01 before 
there is a significant improvement in the contrast (the reason we need such a narrow bandwidth is because at 4λ/D the 

 
Figure 15: The sensitivity of contrast to low-order aberrations is shown in the presence of compensated binary mask errors and 
monochromatic light.  These sensitivities are computed as the absolute change in contrast to changes in the entrance pupil tilt (left), 
focus (middle) and coma (right). 



openings in the mask are tens of wavelengths across). This would have a severe impact on the instrument sensitivity. 
 
Reducing the mask thickness. Thinner masks will have less impact on the transmission pattern, but will start to leak 
photons through the nominally opaque regions of the mask. Tapering the thickness profile at each edge might be more 
effective than an overall reduction in thickness.  
  
Separate masks for each polarization. The parallel polarization is affected by the mask much more than the 
perpendicular state (Figs. 13 and 14). The performance will be improved if the polarization states are separated and 
passed through masks tailored individually for each polarization. Simply rotating the mask design of Fig. 7 will not be 
sufficient, however, since we require that the direction of the strips is aligned with the long (high-resolution) axis of the 
primary. Each polarization state will require its own wavefront control system. 
   
Increasing the F/#. The physical size of the mask pattern is determined by the F/# of the upstream imaging system. A 
larger mask means larger openings and reduced wave-guiding effects. The current system has F/# = 60. 
 
Alternative wavefront correction scheme. The amplitude and phase correction from the zero-path Michelson 
arrangement have specific dependences on wavelength (λ-2 and λ-1) which do not match the chromatic dependence of the 
mask errors. A correction scheme that is better matched to the mask errors will improve the residual contrast. A 
significant improvement in the correction will be difficult to achieve in practice, however. The waveguide errors in the 
mask get worse as the wavelength is increased relative to the gap sizes, whereas DM-based systems tend to produce 
more corrections that diminish as the wavelength is increased. In addition, the chromatic dependence of the mask errors 
can show many oscillations across the optical bandwidth, and varies according to the offset in the mask. 
 
Rectangular input pupil. A rectangular pupil concentrates the diffracted electric field into sidelobes confined to a ‘cross-
hair’ pattern, with much darker regions in the interspersed quadrants. From Eq. (7) we see that the reduced value of E0 
within the dark quadrants makes us much less sensitive to mask errors (of any kind) in these areas. The penalty is that 
the useful field of view is reduced by the strip of bright scattered light that will now appear in the image in the region of 
the high sidelobes. 
 
Each of these should be studied in more detail. There are no doubt other strategies that could also be brought to bear on 
the problem, and a successful solution may consist of a combination of different approaches.  
 

5. SUMMARY 
We have shown how errors in the mask transmission pattern combine with the input point spread function to produce 
scattered starlight that is not blocked by the Lyot stop. We investigated two specific cases: the impact of surface 
roughness of a transparent mask substrate and the transmission errors introduced by waveguiding effects in a metallic 
binary mask.  
 
The surface errors were modeled as a grid of random Gaussian bumps, uncorrelated with the mask pattern. We showed 
that the coronagraph is most sensitive to mask errors at small offsets from the star that have spatial scales comparable to 
the width of the diffraction rings of the stellar point spread function incident on the mask. The DM-based compensation 
system is ineffective at correcting these errors over a bandwidth of 500-600 nm. We find that a surface rms of  ~6 pm on 
spatial scales of ~20 μm contributes ~10-11 to the contrast in the image plane at an offset of 4λ/D. Further study is 
needed to determine whether this requirement can be met by current polishing techniques. 
 
The propagation of light through a metallic binary mask was modeled using electromagnetic simulation software. The 
need to satisfy the boundary conditions in this 3-dimensional structure results in complex perturbations of the 
transmitted amplitude and phase as a function of both wavelength and position in the mask. A simulation of the dual-DM 
Michelson wavefront compensation scheme demonstrated that it was not possible to adequately correct for these errors 
for optical bandwidths of a few percent or more. A contrast of ~10-9 was obtained at 4λ/D for the perpendicular 
polarization, and >10-8 for the parallel polarization. Several possible mitigating strategies were discussed. 
 



We conclude that the design and fabrication of coronagraphic masks to meet the stringent TPF-C requirements will 
likely be very challenging and deserves further study. 
 
The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, 
under contract with the National Aeronautics and Space Administration. 
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