MDS

State-Based Architecture

Bob Rasmussen
May 16, 2001

DS

5

s

S
i

May 16, 2001 ' | E— S 2

State is Central A

e A system comprises project assets in the context of some external
environment that influences them

e The function of mission software is to monitor and control a system to
meet operators’ intents

e MDS manages all essential aspects of this function via state

o Knowledge of the system, including its environment, |
is represented over time in state variables -
|

e The behavior of the system is represented ‘&
by models of this state

¢ Interaction with the system is achieved
via modeled relationships between state
and interface data (measurements
and commands), as mediated
by hardware proxies

¢ Information is reported, stored, and
transported as histories of state,
measurements, and commands

e Operators’ intent, including flight rules
and constraints, are expressed as goals
on system states

y

May 16, 2001 3

A High Level View

mand)

4 state

Gelecom

; GOD

State Knowledge State

Estimate State’

| Determina pactions Control

M

0

May 16, 2001

May 16, 2001

Types of State

e Dynamics
o Attitude, position, gimbal angles, altitude, ...
e Environment
o Ephemeris, light level, atmospheric profiles, terrain, ...
e Device status
o Configuration, temperature, operating modes, failure modes, ...
® Parameters
o Mass properties, scale factors, biases, alignments, noise levels, ...
® Resource usage and allocations
o Power and energy, propellant, data storage, bandwidth, ...

e Data product collections
e Science data, measurement sets, ...

e DM/DT Policies
o Compression/deletion, transport priority, ...

e Externally controlled factors
o DSN schedule and configuration, ...

May 16, 2001

State Determination

Making Sense of the World

¢ One can act only on one’s knowledge of the system
s Knowledge is what you know, not how you know it
s Observations (e.g., measurements) are not knowledge
¢ Estimators find “good” explanations for observations,
given a model of how things work
¢ Knowledge may be propagated into the future, given models and plans
® All knowledge is uncertain

¢ Judgment must be based both on what is known,
and on how well it is known

e However, local consistency of knowledge is achievable Q...“.,.m.....)

r'u.}:'\

il

MDS

APL

State Control

Closing the Loop

May 16, 2001

e QOperators express their intent in the form of goals
e Goals declare what should happen, not how
e Goals may be expressed at any level

e High level goals are elaborated recursively into lower level goals
o Elaboration may be conditional, in order to react to present circumstances

o Coordination of activities is accomplished by scheduling
e Conflicts are resolved, with priority as final arbiter

e Knowledge of all states is maintained, as required to achieve goals
o Knowledge is compared to goal constraints to test for compliance

e Corrective action is applied, as required to achieve goals (Fetecommand)
e Alternate methods of achievement 4
may be applied at any level

e Unachievable goals (and their elaborations)

are dropped individually without sacrificing others "ﬁ"‘%«ﬁiﬁ [coe Eep

e Supports fault tolerance, | =

- S
critical activities, in situ autonomy, __ ’

opportunistic science, and more (Rerer]

State Timelines MDS
e State timelines maintain the value or set of possible values (e.g., a
range) of a state variable as a function of time
e They capture both knowledge and intentions about state
Past Future
%‘ il
= —
A
ON |pon't _|ON Don’t ON
Know .~ OFF |Care
Time

May 16, 2001 8

Value Histories mDS

® A container mechanism supporting functions that produce values over
time (state variable timelines, measurements, commands, ...)

e Encapsulate the interface to data management persistent storage
and data transport

e Stored and transported as data products

e Leverage the use of models to preserve continuous information using
less storage space

e Can also simply store a set of discrete value instances
e Controlled by storage and transport policies

. New Entries

E.g., Curve fit
parameters

‘L_

_/ Entries are combined and compressed as they age and are eventually deleted

May 16, 2001 9

&
State and Time Constraints it

e Control is exercised over the system by imposing ...

e Constraints on states, which limit the range of a state variable
o State is allowed flexibility within these bounds

e Constraints on time, which limit the duration between two time points
e Time points are variable points in time
e These times are allowed flexibility, but again, with constraints

e A state constraint between two time points is called a goal
e A time constraint between two time points is a temporal constraint

e Goals and temporal constraints are expressions of intent

® Success in constraint achievement is an objective matter
o Criteria are explicitly expressed in constraint evaluation code
o Directly verifiable during test, since constraints are explicitly evaluated

May 16, 2001 10

May 16, 2001

o

Constraint Networks mDS

e Goals and temporal constraints each connect a pair of time points

Goal Temporal Constraint

O__ state

|constraint

e Time points are often shared (e.g., one beginning as another ends)

® A collection of connected goals and temporal constraints form a
constraint network

11

Resolving Conflicts

Three goals on the same state

7 Crosshatched areas are
(": outside goal constraints

The constraint —

«|—— The time interval ————

+ - | | <«— flexible start —»

Goals 1 and 2 overlap, so Goal 3 is incompatible with Goal 2,
they’re compatible, as is v but it can wait

May 16, 2001

| |

Timeline Execution MDS

N

May 16, 2001

e Goals are accepted if successfully placed on the timeline for the goal
state variable

e Goals are frozen and acted upon when they appear on the timeline in
the immediate future

e Goals are acted upon by achievers assigned to each state variable
e Elaborators monitor execution and adapt plans, as necessary

Goals

... given the
present goals ...

... and given the
present state, ...

Knowledge

Time
13

Putting It Together

» Elaborators, scheduling, ...

» Goall/event-driven

* Planning and constraint

solving

* Analogous to sequencing,
mode and configuration
control, fault responses

Elaborators

v

/ Constraint Network

d

-———
- -
- -~ -

Executable
Goal

)

K Achievers

<

—>

Estimators

(B

wi % 22

State

N

\ 4

v

Controllers

| S—
T

=

* Achievers, DM/DT, ...

* Provide system behaviors
* Managed via goals and temporal constraints
» Fairly conventional real-time monitoring and control processes

May 16, 2001

DM/DT

e State knowledge
in both places

e Common representation

e Coordinated, consolidated
& maintained, as appropriate

¢ Information exchanged

via state variable proxies L

e Ground based state determination
\ e Typically things like orbit determination, calibration, ...
‘ e Up-linked as necessary (trajectories, parameters, ...)

® Flight based state determination

} e Typically things like attitude determination, device states, faults, ...
e Down-linked as available (part of telemetry)
i
|

e Similar story for goals, measurement, science data, ...

| May 16, 2001 15

Systems Engineering

e Systems and software engineering need to complement one another
e Systems engineering must define the system structure and behavior
o Software must understand the system structure and guide its behavior

e State Analysis is a model-based process defined by MDS to aid
systems and software engineering

o State analysis prompts comparatively methodical and rigorous analyses of
systems

o MDS permits the uniform expression of systems engineering concepts in
software architectural terms

e Resulting products map directly onto the MDS architectural elements
o Most MDS adaptation requirements can be defined by state analysis

e Collaboration and documentation are presently supported by a
web-based tool (the MDS State Database Server)

May 16, 2001 16

MISSION DATA SYSTEM (MDS) _

Backbone Workflow & System Engineering

Sanford Krasner

05/11/01 -1

MISSION DATA SYSTEM (MDS)__

System Engineering Objectives)

« Backbone Increment Objectives -> Collaborating Objects -> Scenario -
> Functional Requirements on Each Object -> Functional
Requirements on Frameworks

* Increment Objectives -> Collaborating Objects -> Scenario ->
Functional Requirements on Each Object -> More Functional
Requirements on More Frameworks

05/11/01 -2

MISSION DATA SYSTEM (MDS) _

Backbone Workflow

+ See spreadsheet at:
s http://mds-lib.jpl.nasa.gov/mds-lib/dscgi/admin.py/Get/File-6391/EDL_Workflow_04_25_01.xls

+ Backbone spreadsheet drives the following concurrently and
incrementally:

— EDL time order

— State Variable Development

— Data Management Development

— Simulation & Test Environment Development
— Component and Infrastructure Development

05/11/01 3

MISSION DATA SYSTEM (MDS)__

JPL |
X e

Backbone Themes

« Create and Extrapolate States
* Add measurements, estimators, fault detection from measurements
* Add uncertainly and noise

* Add controllers, commands and goals; add redundancy between
commands and measurements

 Add redundant information
e Add closed-loop control
 Add 3D dynamics

05/11/01 4

| = | I

05/11/01

Create and Extrapolate States

MISSION DATA SYSTEM-

Increment

I_ Simulation
g

ight

Transport

| Ground

| Framework

[Test

EDL "Rock”

tart with s imple vertical descent within aeroshell begmaing about 10 minutes from Impact

[Get initialized in a free fall

Point mass with no rotation

attitude)

dynamics (assume fixed upright

Perlect time knowlkedge

One xtate varisbk (scalsr
continuous value with

TStart wah just a wre Enk

Transport uncompresscd
akiude specd xtate history

Perfect time knowkdge

Proxy for vehicke alitude state

[Dynamics smultion

Simulation gencrated value

variabk mitialized to "unknown"lhistorics

[Show that plots of

"unknown” values show
"unknown” (which is different
from missing dats)

Updute atitude from ground
estimates

Update vehick ahitude and
[descent rate estimate via
eround provided data

Re port update event
(presumably as an ELF
message)

Extend estimate of akitude and
descent rate by integrating

of ground provided estimate
function

trivial dynamics mode| past end|

Trans port alifude cstimate
from ground to fight

Transport update ¢ vent
message. flight o ground

Prepare transportable cxtimate

rate over some interval that
inchudes the present

Displey update cvent message

Manual preparatian and

for vehick #¥iude and descent [submigsion of an estimate

function (i.c., human-in-the-
loop extimator)

Policy recognition that an
e stimate tunction needs 1o be
iranspored

Vakic hivtory transport via wire
protocol ground to flight

ELF cvent transport via wire
protacol flight to ground

[Compare sanulation and
ground state history resulls,
[which should match to within|
accuracy of manually
prepared update for the
portion of vakie history that
was updated

Make pusition 3-dbnewa lonul

dimensional position. one
coordmate of which is altitude

Gravity is still strictly vectitine ar
and vernical

Switch from ahitude-only 10 a 3-{Change vehick sltiude state

variable into 3-dimensional
poxition state variabk (2nd-
order polynomial estimate
function for each axis)

Assume independeant axes for
now - still zero uncertainty

[Transport 3-dime nsional
position flight to ground

[Change vehicke alifude proxy
state variable into 3.
dimensional position proxy
<tate varisble

Extract alitude ispeed from 3-
dimensional poskion

Co-plot ahitude ispeed from
[simulation and transported
state history

TSTale varibles wilh ve stor

and sigma for each)

intervaliic value historicx (mean|steps above with new 3-

Repeal uplink and downink

dimensional state variablk

|Add Mars surface

Flat, smooth, horizonta | plane
atsome akitude with no
hazards

No dexcent below this point
Stop flight system and

simulation i velocity at impact
s 00 Wirge

Add surfsce alitude stale
variable (altitude with
uncertainty above same deal
reference surface ax vehick:
akitude)

Surface altitude recovered at
initia lization is a fixed value

[Constant estimate function
(... 0th ordec polynomial)

Accompany ground update of
vehicle ahitude with surface
abitude update

Modify vehicle altitude
cstimator to project impact at
surface (ic.. no dencent below
surface sMitude)

Trans porl exmated surfice
atiude. ground to flight

ALd praxy for surface aftude
state variable

Prepare transportable estimate
update for surface akiude

Display fixed value Mars
surface akitude as text

Abifty to top fight sysicm on
detected simulation condition

Textual vahie display ol scalar
values fom state variable
query (since this & 3 one-shot
e m, time really in't a factor
yet)

Verlly Mars surface apdate

Verify im and flight system
stop atimpact. while ground
sytem keeps running
(realiy therapy)

[Ea timute altitude above Mars
s urfuce

Add a derived stute varabk for
vehxke altitude above Mars
surface

[(Derived states are not
transportable)

[Add s derived state variabk for
vehick alitude above Marx
surface

Plot derived allitude/rate

Derived s1ate variables

IMONTE trans lation frame tree
(with the idexl reference
surface as root, vehick akitude
above ideadrelference surface
% one branch, and Mars
surface ahitude above ieal
reference surface as &
[+eparate branch)

[Show simulited mpact
ovcurs near where derived
aMitude wbove Mar surface
says € shoukd (i.c., al about
2er0)

GO

MISSION DATA SYSTEIngf(

Get initialized in a free fall

Update altitude from ground estimates
Make position 3-dimensional

Add Mars surface

Estimate altitude above Mars surface
Add ideal accelerometer

°
N N D AW N -

Add atmospheric drag

05/11/01 6

MISSION DATA SYSTEM (MDS)__

05/11/01

Add measurements, estimators, fault detection |

from measurements

device

[One Tinear verticsl axis

history

Add integration of sccck ration
10 estimator

(no biax o

tor now)

Sample time contralled by fight
xoftware (axxume fixed della-t
for now with dela-v

only verticat axix)

NOTE—Praperly done. the
me asurement supplics
reviduak via s measurement
modeL which the estenator

time s deha-t)

Should show zero g

along with modekd
acceleration. This is important
for later.

Create s rewidual value history
for 123t purpoxes (being able to
tap intemal cakulations like

this may he & common request)

De fauk tranvport policy to send
ail

Defaul storage policy to keep
only the bt vakie

(as deha-y for

history. flight 10 ground

Transpon uncompressd
residual history. flight to ground

now)

Plot measurement rexiduaks
(not by axking measurements,
since the apriori estimate is no
longer available. but rather by
getting them directly fom the
e stimator)

D faull storage policy to keep
a1

De fault transport policy to send
none

[((basically a direct exercie of
the measurement model but
[with actus] simulated state ax
input)

NOTE—Msintain ability to
simulite at this kvel as an
option (ndependently
selectable on each interface),
regardlexs of subsequent
detailed simulation capability

Meaxurement modetsvuilabke
from measurements

Accurale measurement time
availahk from messurements

Plot interfuce to gencral vahic
bistories (meayurements,
residuals, and simulated vahies
in this cane)

Plots should show vakics only
a1 discrete times (no
intepolate d)

measurements (valie and
frequency) armive

Show measurement vakigs
and residuaks arc hoth zero

Show no change in
e stimates

T |Add atmus pheric drag

Model as verucal foree verus
drop speed (no winds,
turbuknee. no change in
density wih ahitude, ...)

Accekrameter should sense

Add drag model 10 the
vehicle position ¢stimator (no
process noixe)

Asxume buik-in, fixed drag
force and vehicke mass
that maich the

(de cekeration in this caxe)

simulation

Add non-gravitational
acceleration to the accelker-
ometer measurement model
(the vehicle position estimator

Plot non-graviational
acceleration

Plot measurement residualk

Model sharing (esfimator
sharex s model of non-

additiona] view on the vehick
position state)

gravitationsl acoeleration via n

[Show extimate and
ximulation still track

[Show accelerometer
measusements not zero und
match simulation, but
residuals are stif zero

specitied time part way through
the scenario (ax dictated in the
test seript)

state variable (ust OK or
FAILED as value range for
now)

Init status 10 UNKOWN (= OK
or EAILED)

Estimate acceleromeler status
a5 OKAY fthere are
measurements, UKNOWN afier|
one or more mixxca. and
FAILED (trap state) if more
than three misses

Update accekration
me asurement model to inclade
status

Vehick position ¢xtimator
should screen bad
mcasurements and continue to
run (Abematively. # shoukd
subscribe to vanitized*
measurements from the
wecelerometer status estimator
and continue 1o run with o
measurements)

* “Sanitized” means that the
values of some states in the
original measurement model
have been commited in order
10 present s new measurement
with a simpler modelto
extimators.

lerometer "status”, fight to
ground

"statux” state variabk

Display current sccelerometer
“status as et (this meany
there & 8 running display time
clock driving the display, so
there must be some way 1o
control delay and sampling
rate)

Alarm (o operators on
accekrometer failice (this
means there must he some
way to control alarm criteria)

¢ stimator, where misxing data
in this case is reported ax a
measurement with no data

Ability to order pracesxing (in
this caxe secekrometer statux
¢ stimute runs before position
¢ stimator so data fram bad
accelerometer dats i
sereenedy

Discretely valued. intetvallic
value history

Vahie sets (for cnumerated
types)

Realtime textual vakie display
of vakue xet valuex from state
variabk queries

Simulatian supports fauk
injection

Alarms in ground system

* Send measurement to both
vehik position and acceler-
ometer statux ¢xtunators
(Altematively. only the
accelerometer statux estimator

xecs the raw measurements,
and it produces new “sandized"
measurements for the position
e stimator whe never the

! is declared OK)

must make thix available as an
dditions) *vie w)
] Fall alent r Sutpii ata | Add accek “status® | 1ransport uncompressed AJd proxy for acoclerometer [S<nsof TTor eportig 1o TShow extimate and

simulation still wack. despie
failure

Show accelerometer
measurements report emrors

Show failure i reported
comrectly in socelerometer
status

Backbone Themes

MISSION DATA SYSTEM (MDS)__

2)

Fault Detection

— 8 Fail accelerometer silent

— 9 Fail accelerometer flat-line

10 Fail accelerometer frozen

11 Compress accelerometer status
Add uncertainty
- 12 Add vehicle mass parameter
- 13 Add initial condition uncertainty
- 14 Add simple accelerometer noise
— 15 Add accelerometer sampling jitter

05/11/01

Controller & Goal Increments

1€ JAdd w simpic pyro swhch

Commandabk one-vhot puke.
but no srming. and 30 on, yet

No meaxuremenis of nwilch
state

Add text port interface and
means o manually initiate
[switch command vis this port

Add state vanabk for pyro
witch state (vahie range of
OPEN or CLOSED - another
value set)

Add text port

Add switch state controlkr (for
1e5t port to tak 10)

Initialize state varisble to
OPEN (though UNKNOWN =
[OPEN or CLOSED is defined)

Estmate switch state from
«witch command

[Fransport compressed pyro
switch xtate, fight to ground

Add proxy for pyro «whth state
variabk

Display current pyro xwitch
vtate as text

Alert to operators on change of
state this meany there must be
some way to control aknt
cricra)

Alertn ground system (not
the xame ax alarms. but rather
s fexs alarming way o notify
operators of something
significant)

Test interface for diroct low-
level commanding

Command cavesdropping as

come from the testinterfice)

input to extimaton (even if they|

Command swich (v tent
nort on flight xystem) at
some point above the
surface

Verify alert on state change
at the correct lime

T7 [A3d superionic chate

(Triggered by a amgle pyro
«witch actustion (the one
wdded above)

Only new dynamics* i change
in vertical decelerution versus
drop specd at chute
deployment (no need yet to
carry apparent air mass.
ignificamt ampukse associated
with deployment, or other
complications)

ADd state varahk for
supersonic chute state (value
range of STOWED. or
DEPLOYED - another value
set)

Initialize state variabk to
STOWED, (though other vakie
sets are wbso defined)

De ploy supe monic chute at
fixed time (via 2 goal)

Estimate supersonic chute
[deployment stute from pyro

s witch state end acce kration
state (from acceleration view
on vehick posiion, nofacceler-
[ometer measurements)*

Add supersonic chute state ax
an mput to the ahitude

e stimator (which means the

[stimator has 10 have » model
ofthe chute drag)

fgnore measurement with large
residuak (note that timing
mismatches may cause a short
pike i the residuals at chute
deployment: this shoukd not be
considered as incomect unless
pernsistent, but such
measurements should be
ignored for now)

* Note that this w nota derived
state

[Transport compressed
[supersonic chute state history,
thight to ground

[Transport goul net, ground to
(light

Add proxy for supemonkc chute
[state variable

Prepare a transportabke goal
subnet and initiate transmision

D3¢ fuult transpont policy for goal
[subnets to send all marked ax
transpostable

Display supersonic chute state
hictory

Disable akert on swilch state
(thix meany there must be
some way to remove skt
criterin)

Akt on chute deployment
insead

Goal xubnel with one goaland
one zero-duration temporal
constraint

Goal xubnet preparation tool

Goalsubnet transport (create
iranxportabk data product
containing goul net)

Goal subnet insta lation (into
the initiatly cmpty flight gox)
net) on receipt

Gosl sche duling (fixed time for
now, so this i essentiall null)

Time point firing with directives
10 achicvers (switch controlier
in this caxe)

Monitor firing commands to
determine precise command
tming

[Show goal net & receved
a0d instalied

Show switch commanded at
the xpecified time (n the
realsyntem. this and many
ofthe other timed events
have to be done very
nccurate ty)

Show supersonic chute state
reported correctly

Show aceelerometer
rexidusls remain small
throughout, meaning
extimator it anticipsting
chute effects

T8 |Fail the supemanic chute
controt awiteh

Setso commands to the swich
have no effect

Add FATED_OPEN 10 the
swich state vabie range

k and switch

Transport goal faiire cvent.
flght to ground (¢ventually. not
a1l goal faitures will be

ing and we'llneed o

status extimators should be
abl 10 1ellthe difference
between a switch failire und a
flat-line accelerometer failine

Switch goal should report faikd
and teminate

[way to say which ones wre)

Tipdate swilch state varahic
proxy

Update switch “tatux” dinplay
Alarm FALED OPEN state

Display swilch goat faiure
e vent

Alsrm switch goal fuilure event

Cyclically
<atimators (up to now
extimators simply chained
acyclically. as in switch ->
chute -~ altitude, but now
|estimated chute state can abso
atlect whether or not the switch
ix extimated to be working)

Goal faibore handling by goal
network

Gosl failure reporting

Event alarma

Tty both acoek and
switch faiture modes and
[show that the correct
diagnosis & made

Show correct alrms are
reportcd

79 |Vkke chute deployment
Jawitch redundant

Either switch will release the
supe monic chute

Add sccond state varabk for
second pyro switch

Put both switches in the same
s witch set "Rem”

Add second switch command
10 chute xtate estimator

¢ vidence

Add x<cond switch to subgoal

net

Transpont additional states.
flight to ground

Add proxy for second pyro
s witch

Display and alarm both switch
tates

Nested temy

As second instance of an
¢ xisting chass. transport.
<stmation. control and xo0 on
should happen with fittke
additional ¢ffort

[Show chuie can be
[deployed at the right time
with one switch failsd

[Show chute state is reported
corre ctly

@ MISSION DATA SYSTEM (MDS) _

JPL More Backbone Themes

* Goals, Controllers & Commands; redundancy of commands &

measurements
- 16 Add a simple pyro switch
- 17 Add supersonic chute
— 18 Fail the supersonic chute control switch
- 19 Make chute deployment switch redundant
- 20 Detect proper supersonic chute deployment point

05/11/01 -10

| =] I

MISSION DATA SYSTEM (MDS) _

 Add redundant commands

- 21
- 22
- 23
- 24
— 25
— 26

Add supersonic chute and backshell separation

Detect proper supersonic chute and backshell separation point
Add subsonic chute

Add heatshield separation

Add subsonic chute separation

Detect proper subsonic chute separation point

 Add redundant measurements

- 27
— 28
- 29
— 30

05/11/01

Add deployment and separation indicators

Improve altitude estimator

Add ideal altimeter

Estimate altitude and surface elevation from altimetry

31
32
e« 33
e 34
35

05/11/01

Add closed-loop control

Add a descent engine

Detect proper time for descent engine firing
Add a descent engine cutoff

Add a descent engine controller

Add contact indicator

MISSION DATA SYSTEM (MDS)__

MISSION DATA SYSTEM (MDS)__

JPL 3D World | 2
« 36 Add vehicle rotation
« 37 Addanideal 3 axis IRU
« 38 Add aset of ideal thrusters
« 39 Add an attitude control law
« 40 Add thruster history compression

05/11/01

pul | = | I

MISSION DATA SYSTEM—(MD

EDL time order

1-dimensional universe (straight down)
Create position/altitude state variable
Free-fall in vacuum

Update altitude from ground uplink
Add atmospheric drag

Fire pyro to release backshell & supersonic chute - increase
atmospheric drag

Release supersonic chute; deploy subsonic chute
Separate heatshield

Separate subsonic chute

Use Altimeter

Use descent engine to control descent

Shut-off engine on estimate or contact sensor.

05/11/01 -14

MISSION DATA SYSTEM

State Variable Estimate and Control Development

* Create state variable with time extraplolation model

» Update model via uplink

* Add “relative states” - spacecraft state wrt ideal, real surface
* Add sensor (accelerometer), measurements, estimation

* Add sensor failure mode detection, invalidate measurements
* Add measurement noise, initial condition uncertainty

* Add actuator (pyro switch), controller, command, discrete state
(separation)

* Add goals, elaboration, execution

» Uplink goals

* Add actuator redundancy

* Add redundant measurements (altimeter), change WRT topology

* Add delegation framework (device control following descent profile)

* Add redundant altitude sensor (contact indicator)
05/11/01 -15

;31
%

MISSION DATA SYSTEM/(MDS)__

Data Management Development

 Initialization

» Simple transport

» State Estimate Transport

 Log Events

« Uplink and use products

« Create & Initialize from persistent store
» Transport measurements

« Compress data

05/11/01 -16

MISSION DATA SYSTEM (MDS) _

.y i

Simulation & Test Environment Development

» Representations compatible w/ ground

* Virtual time

« Simple acceleration model

* Stop run under specified conditions (error)
« Device simulation and interface

e Simple drag model

» Device failure models

» Random initial conditions and noise

05/11/01 -17

MISSION DATA SYSTEM (MDS)__

Ground System Development

» Uplink model update
* Post-real time plotting
* Co-plotting of Flight and Truth (Sim) data
* Integrate to Third-Party Software visualization tool
» Real-time display of estimate functions, w/ uncertainty
» Text display
e Alarm display
‘ * Goal-net generation and uplink

05/11/01 -18

MISSION DATA SYSTEM (MDS)

)

Component and Infrastructure Development

* Single-threaded components
* Multiple time frames

« Multi-threaded execution, synchronous and asynchronous
communication

* Cyclic, time-alarm and event-based execution

05/11/01 -19

MISSION DATA SYSTEM (MDS)_

Identify Objects in the Increment Y

PositionBasisStat

. eVariable
1. ews1 =

. \ ' B12: updateState()

— B9: run(RTDuration)
3: Schedule() Scheduler — PositionEstimator
L= Fom———m e 1
User — !
i
2: ews2 \I B10: getNextMeasurementSince(t) |
2 i
J/ A4: run(RTDuration) The behavior is to get i
) ") measurments !
ews1; Commad (via EWS) Scheduler to schedule PostitionEstimator AN untialli:a more measurments '
to run at the commanded rate (cycles per period) and phase available '
(executionSequence) from start time to stop time. A8: update() for the time specified |
Estimator phase (executionSequence) shall be set so as to execute after o |
AcceleromterHwProxy has executed. !
i
ews2; Command (via EWS) Scheduler to schedule AccelerometerHwProxy - '
to execute at the commanded rate (cycles per period) and phase AcceleromaterHw — :
(executionSequence) from start time to stop time. ‘—‘png! """"""""""""""""""""""""""""
B11: Each one of the getNextMeasurementSince(t)
EWS calls are synchronized and Scheduler returns status of request calls automatically returns an
L q\ AccelerometerMeasurement(
rate = the execution frequency of this entity (cycle per period) - timeStamp
phase = an offset sequence that request where in the rate group the object/ AS: getData(Accelerometer) duration
component will execute (Sim uses executionSequence) X, ¥,2)
i/ A6: ews3
A7:xy, 2z, T
ews3; Request to SIM (via EWS synchronous
interface) for the latest Accelerometer data. SIM
returns sample
data
SiM
05/11/01 -20

05/11/01

EDL Increment 4 Object Diagram

Flight Setup Deployment

‘| Flight Setup Data

A o Product Store
ST Flight Setup (Flight Setup l ‘
User T~ Spacecraft Spacecraft :
Position Position '
Estimator \ Basis SV i
to Test | — B — [S
Coordinator | The persistent
! store is the file
: data that is
common to both
H the Flight Setup
Flight Deployment andl Flight Dats
Product Stores
Ground Spacecraft Flight Data
— e e osition - - Product Store
to Test Proxy 8V — I
Coordinator | r e T
Flight Spacecraft Flight Spacecraft
Position Position
Estimator Basis SV

Flight Data
TJransport

Ground Deployment

User
to Display
State Query Ground State
Manager Query
toTest | T
Coordinator
) [Greuid ™|
——i Spacecraft
A Position
User

rﬁgm Spacecraft

Position
Proxy SV

Ground srgaoé»cra%{
Position

Basis SV

Ground Data
Transport

Ground Data

Product Store

3/29/01

MISSION DATA SYSTEIQ‘I*

| =] I

to Flight

Deployment

to Ground
Deployment

to Ground
State Query

05/11/01

EDL Increment 4 Object Diagram

Simulation Deployment

Sim Data Product
Store

“~._ | Sim Spacecraft Sim Spacecraft
Position Position
Generator Basis SV

(. .

Sim State Query I

]

Test Coordinator

Display Deployment

Query File |
\
B = N
Display State e
Query]
| Manager A
/ User

CSV Writer CSV File

3/29/01

MISSION DATA SYSTEM (MDS) _

mds accelerometer increment-6
sequence diagram (Ver-H)

1) Initialize Scheduler prior to TO

2) ews1; Commad (via EWS) Scheduler to schedule
Position Estimator to run at once per second from TO to
distant future.

Estimator shall be set so as to execute after
AcceleromterHwPraxy has executed.

3) ews2; Command {via EWS) Scheduler to schedule
AccelerometerHwProxy to run at twice per second from T0+10
to distant future.

TO= simulation starttime

VClock

AccelerometerHw Scheduler

Proxy

Run Estimator at 1 Hz (ews1)

4) Estimator will run with the most recent evidence and will
retrieve measurements not oider then 2 seconds

'one measurement. Estimator will run after proxy and retrieve
measurement (not shown in diagram).

6) Scheduler sends run message to AccelerometerHwProxy

7) AccelerometerHwProxy request SIM to get data via EWS
synchronous interface for the latest Accelerometer data (ews3).

SIM returns Accelerometer sample data as follows:
-3 Integers representing deita velocity since last sample
X = DeltaV, (m/sec)
Y= Deltavy {m/sec)
Z aDeltaV, (m/sec)

The device proxy automatically updates the measurement

8) Scheduler executes Position Estimator after proxy for
concurrent intervals.

Each getNextMeasurementSince(t) call to proxy automatically
returns a measurement as follows:
AccelerometerMeasurement(
timeStamp (inserted by proxy)
duration (sample interval in seconds inserted by proxy)
3 integers representing delta velocity along x, y, z axes)

9) Update Position state knowledge

. Torl0

To+105

TO+11 4

-

Lﬁ‘i Schedule()
Run AccelerometerHwProxy at 2Hz (ews2) !

e

"] Scheduls()

Position
Estimator

PositionBasis
StateVariable

SIM

getNextM

[L -
nodata | J

—C
- o

getData() [

run{RTDuration)

leasurementSince(t)

From T0 to TO+9. Each Estimator run will
request measurements from proxy and proxy
will return no data.

Get Accelerome]

P

.
getData()| |

|| updateq

run(RTDuration}

D M-

Get Accelerome)

—f*
measurement().
L—op

measurement()|

u
no data [_]

LLJ update()

!

J

or data ews3)

- »

(x=g,y=0,z=0)

ter data (9‘5’39,,)

{ x=0,y=0,z=0)

" run(RTDuration)

getNextMeasurementSince(t)

getNextMeasurementSince(t)

The behavior is to get measurements
from proxy until no more measurements
available for the time specified

_getNextMeasurementSince(t)

update?ftrate())

MISSION DATA SYSTEM/(MDS)__

Requirement Based on Increment Scenario
e — T —————————————————————

« Requirements to support Flight
— .Increment-6 shall have the same deployments as Increment-5.

— .Component Scheduler shall accept component commands via EWS
synchronous interface that schedule components to run at specified Rate
and Phase offset.

— .The Component Scheduler shall provide a status return consequent to a
component schedule command.

— . The Component Scheduler shall invoke run methods on successfully
scheduled components.

— .Flight deployment shall include and adapt an AccelerometerHwProxy
from the DeviceHwProxy frameworks

05/11/01 24

MISSION DATA SYSTEM (MDS) _

Summary

« System Process goes from simplified mission scenarios to:
— Capabilities allocated to implementable “units of work”
— Capabilities allocated to framework capabilities.

« Scenarios, capabilities, frameworks are relevant to real missions
» Frameworks are available for adaptations

« Reference adaptations are available for reference

» State Analysis process developed based on Backbone

05/11/01 -25

| = | I

MISSION DATA SYSTEM (MDS)__

12/11/2000

State Analysis

Sanford Krasner

SK -1

MISSION DATA SYSTEM (MDS)_

What is State Analysis?)

« MDS Adaptation is based on building Mission Software Systems out of MDS
“framework elements”: states, goals, measurements, commands, estimators,
controllers, etc.

 MDS Frameworks support these elements:

— interconnections, notification, initialization, persistent storage, etc.

« MDS Adaptation primarily instantiating existing frameworks
— Filling in adaptation specifics:
» Estimation and control Algorithms
* Which measurements are used
* Which other states are needed, etc.

« State Analysis is: Filling in adaptation specifics, in the pattern imposed by the
MDS frameworks.
e State analysis encourages reuse:
— OfMDS frameworks
— Of adaptations from project to project
— Of adaptation types for multiple instances

— Of adaptations between flight and ground
12/11/2000 SK -2

MISSION DATA SYSTEM (MDS)__

State Database Relations

e =
! :
: Estimator | Estimator , :
StateTF unCtlon Type <I{ I nstance eStImator :
ype : :
: :
| :
evidence i evidence stpplies i
Measurement | o : Concrete est ch,,/ueg}I
Type ! Meas. Type as pvidende
State Variable | ¢ ! — State Variable | |
Tvgézz.\:x;;,,: ” ' = instance =
H/W Proxy : H/W Proxy sipplies !
Interface ¢ : Interface esf values
Goal Type Type ! Instance ak input!
subdoals evidgnce evidence E
“ L}
Command [! [Concrete 5
Type i | Command Type |
elaboration : E
SubGoal ! E
Network Controller : Controller controller i
Type <E. lnstance :
: i
o P |
12/11/2000 Deployment Instance | SK -3

May 10, 2001

MISSION DATA SYSTEM(MDS)\

Simple State Analysis Process &

» Identify a state: Spacecraft Position
» Identify goals: Sitting at Target Landing Site

 How do you estimate it:
— Propagate initial trajectory
— Incorporate accelerometer measurements
— Incorporate predicted effects of thruster commands
— Incorporate altimeter measurements

« What other goals do you need (elaboration):

— Set up attitude for entry
— Chutes deployed at altitude/velocity

» Pyro(s) fired at altitude/velocity
— Thrusters firing to control descent

» Thruster cat. bed heaters warm

— Cat. bed switches on

— Altimeter producing measurements
— eftc.

« What other states are implied? Repeat until done
12/11/2000 SK -4

e Edit View ‘Go Communicator ‘Help : MISSION :\DATA:SYSTEM (MDS)
2 23D a2 @ & B ﬁ
Back Fordard " Heload Home Search:. Netscape " Prnt Security Stop : ‘
’%ﬁt'Bookmaﬂcs J& Location']http'»’/sdsfsds beta_3/html_pages/sds_top.html li @ﬂ"w‘h&t‘a Related
' Instant Massage Members ' webMai "B Connections ' BizJoumal B Smantlpdate Mktpiace
SDS Home MDS Home MDS Doc

Login Hew User Beta Model AlphaMadel Design Diagram RegDoc ReleaseMotes Help

SC-11747 ; Name | EEait l]nos;eorn: [Early Marcn lamiaizaian) -
Increment 3 State : -
Analysis - Take | Tnis slale analyss supparts he MDS/EDL Releience Masan 8 :—t!
) i . Relziance ?paoec-an Delinitan, L dcl’ir:es Lhe Fulleﬂl Dexl
E:::ut?l‘use"é:::t o1 D’““P“‘m E& ;;g;-sund-ng al whal Lhe Spaozciall will laak like al ine &ngd af _-:j
29mar0) EDL 3 :
MDS/EDL 03 | Container | | |RETA-ROOT-0
Rocky8 test sfp01 -
MDS/EDL'0%2 (Early i Ovner | E 1 gbert.c.barrv@ipl.nasa.qov
March .
familiarization) z Categories (Add ; I iGNC
EDL Rover Bat & Temperature
$<-debuaging Growps Add [Edit [GNC S/C Bagebody
IGNC Entries
IReaction Thruster
Actuator Types Add Edit |Heater
iSeries Parallel Switch Combinatio
POS2 Aligned Reaction Thruster? (POSK-NEGY)
Actuaior Ins es |Add N |POSZ Aligned Reaction Thrusterl (POSK-POSY)
fEDL{Rouer Battery A 2nd Heater -
|EDL/Rover Battery & 1st Heater
Thruster fire
Comumand Types Add Edit | ‘
|Solid State Power Switch (X2000) Control
Controller Types Add [E_@_L 3Tem erature Controller
EDL/Rover Battery & Temperatue Controller
Coniroller Instances Add Edit |
§ DL/Royer Battery B T ratue roll
Estimator Types Add |Edit iDevice Power Available
|Temperature
Estimaior Ins es Add E iED Rover Battery A Heater 1 Power Available
iED Rover Battery & Bulk Temperature
12/11/2000 Goal Types Add [Edit |Canfigure Power to 3 Device, Select Final Control Switch SK -5
{Maintain EDL/Rover Battery & Temperature

il T | 1 o PRI o S : ’ i oGEe e e -

e« Edit" View: Go-Lommunicator.~ Help : o : MISSION DATA SYSTEM (MDS)
w2 B N a @ & 3
Back Farwas;:i Reload Home Search = Netscape " Prift Secirily Slop
J 'Bookmarks Jff. Locatwn‘ihttp'ﬁsdsfsds beta_3/html_pages/sds_top.html

' instant Messags Membar _____ ' WebMal _ Connechans. Bizdounal (B SmatUpdate ' Mktplace
SDSHome MDS Home MDS Doc

] @& What's Related

Login HewUser Bﬁta Model AlphalModel Design Diagram ReqgDoc ReleaseMotes Help
E EDL/Rover Battery A Temperatue Controller -

>

Coniroller Instances - Add Edit

f DL/Rover T ratue Controll

Edit {Device Power Available

§Temperatur
EDL/Rover Battery A Heater 1 Power Availabl

Edit EED[,{Rover Battery & Bulk Temperature
di |Configure Power to a Device, Select Final Control Switch
ik [Maintain EDL/Rover Battery A Temperature
IPRT Veoltage Measurement

IPRTTemgerature Sensor

EDL/Rover Ba emperature 4

Yoltage-Temperature Calibration Curve
}Trig! State Type
i-ﬁultitude (distance, matres)
Temperature, Deqg, K
%Position (distance, meters)
Attitude (quaternion, non-dimensional
ITrial State 2
|Trial State
iMechanicaI: Basebody: Attitude
Edit |Mechanical; Basebody: Location
Mechanical: Basebody: Altitude wrt Landing Site
Mechanical: Basebody: Horizontal Velocity wrt Surface
DL/Rover Battery & Temperature
Single Precisign Floating Point
EDL/Rover Battery A Heater 1 Power Confiquration -

Estimator Types

E

N
Q.
0.

Estimaior Instances

Goal Types

e
(R
O

E |

Measurement Types

B

1w

dd
d
d

Sensor Types
Sensor Instances
State Function Types

=

B |

S

BB

State Variable Types

>
o
E

State Variable Instances

>
2.
2.

R

dit

f State Value Types |
} Subgoal Neiworks |
} View Types (Views) |

g |3>
.
o
”fﬁ“ 't‘-ﬁ~

=l
'”fii"“

Velocity View

12/11/2000

T W . 1 i N S ™ : T wl s Ve LAY e T g

STATE VARIABLE TYPE:
State Type Name
State Type Description
Basis/Derived
Derivation (Conditional: only if a derived state variable)
Initialization Process
Default State Type Storage Policy
Default State Type Transport Policy
Default Value History Initialization Process
State Views
State View Name
State View Description (includes range)
Parameters
Return Value Type (includes represenation of uncertainty) |

(Link-S) State Variable Instance: State Variable Instances — [list of stak instances of this type]
(Link-RO) State Variable Type: Parent State Variable Types — [list of state variable types this state
variable type is derived from/uses to perform derivation]
Conditional: only if a derived state variable
(For each State Variable Type define its role. Prompt use to enter role name.)
(Link-S) State Variable Type: Dependent State Variable Types -[list of derived state variable types that
use this state variable type in their derivation]
(Link-S) Goal Type: Applicable Goal Types —[list of types of goals that can be applied to this type of
state variable]
(Link-S) State Function Type: State Function Types — [tlist of types of state functions that will be used
for this state variable type] ‘
(For each state function type there is a specific return type which is defined in state function
type and displayed here. Link decorated with return type) ‘
(Link-S) Command Type: Command Types — [list of types of commands which affect this state
variable type]
(Link-S) Command Type: Command Types— [list of types of commands whose effects model use this
state variable type]
(Link-S) Measurement Type: Measurement Types — [list of types of measurements which measure this
state variable type]
(Link-S) Estimator Type: Evidence Receivers — [list of esimator types which use this state variable
type for estimation]
(Link-S) Estimator Type: Estimators — [list of estimator types that may compute estimates of this state
variable type]
Conditional: only if a basis state variable
(Link-S) Controller Type: Controllers — [list of controller types which use this state variable type for
control)

(Link) Hardware Proxy Type: Hardware Proxy Types ~ [list of hardware proxies types
which can be used to measure or command this state. Referenced in
measurement model or effects model]

(Hardware Proxy Types are sublists under the controller and estimator links
listed above. They show up automatically and are viewable only under each
contoller and estimator link.)

STATE VARIABLE INSTANCE:

(Link-S)

(Link-S)

(Link-S)

(Link-RU)

(Link)

(Link)

(Link)
(Link-8)
(Link-S)

(Link)

Basis/Derived/Proxy
(Conditions: If State Variable Type not derived then select basis or proxy,

else if State Variable Type is derived then derived

else if State Variable Type not yet defined then select basis, derived or proxy)
State Variable Instance Name (link if proxy)
State Variable Instance Description
Supported Views (list from State Variable Type, check applicable views)
Policy Notes (how & when, including but not limited to the following)

Default State Type Compression Methods

Compression Method Name

Compression Method Description

Compression Activation Method
State Variable Instance: Proxy Instances — [list of proxies to this state variable instance]
Conditional: only if a basis state variable. Decorated with deployment.
State Variable Instance: Basis & Sibling Proxy State Variable Instances — [list of basis and
sibling proxy state variable instances which this instance is a proxy to}
Conditional: only if a proxy state variable. Decorated with deployment.
State Variable Instance: Dependent State Variable Instances--[list of derived state variable
instances that use this state variable instance in their derivation]
State Variable Instance: Parent State Variable Instances — [list of state variable instances this
state variable instance is derived from; associated in some way (ordered as keyword) to
derivation arguments]
Conditional: only if a derived state variable.
(For each State Variable Instance associate its role from its State Variable Type)
Deployment Instance: Deployment Instance — [deployment where this state variable instance
lives]
State Variable Type: State Type — [type of state variable this state variable instance is an
instance of]
Conditional: only if basis or derived.
Controller Instance: Controller — [the controller instance that controls this state variable
instance]
Controller Instance: Controllers That Use — [list of controller instances this state instance
supplies estimated values to]
Estimator Instance: Evidence Receivers — [list of estimator instances which use estimated
values of this state instance as evidence]
Estimator Instance: Estimator — [estimator that computes estimates of this gate variable
instance]
Conditional: only if a basis state variable.

(Link) Hardware Proxy Instance: Hardware Proxy Instances — [list of hardware proxies
which can be used to measure or command this state. Referenced in
measurement model or effects model]

(Hardware Proxy Instances are sublists under the controller and estimator links
listed above. They show up automatically and are viewable only under each
contoller and estimator link.)

MISSION DATA SYSTEM (MDS) _

Goal Elaboration

« Each goal may have other (sub)goals that have to happen:
— Before (preparation - warm cat. bed heaters for 90 minutes before using)
— During (keep accelerometers powered on during descent)
— After (safely shut-down engine after landing)

» Elaboration adds subgoals to support parent goal (and so on
recursively)

* Working on Goal Elaboration Tool to support elaboration drawings,
integrate to State Database

12/11/2000 SK -9

The flash indicates that a %:I is typically used only as an This is a goal to be elaborated. It is associated with two time
event to signal a condition. Nevertheless, it may have an points. There is an implied [0, «] time constraint between these
elaboration (e.g., to assure that detection is possible) time points, but additional fime constraints may be present

t all goals have parameters.
elsewhere. Not all goals have paramete

4 Item Name:
State Name:
Goal Name[parameters]

This is the end
time point.

e This is the start
time point,

I Everything below this dashed line is created by elaboration of the goal above the dashed line. Goals with no elaboration are called \

:

Goals to be elaborated may be
_ executable or nan-executable __| ____ . ______________.

“terminal”, This is indicated simply by
showing nothing below this dashed line

A dotted Iinfi be'rwgen two }:rimeh
o . : points is used fo indicate that the
Iktlels“lespg cshes?gliglg\jnzo&:irvg‘"s:ﬁ two time points at either end are
understood fixed reference poin really the same time point.
in time (e.g., 1/1/1958). Absolute ;
temporal constraint are specified
as relative temporal constraints
with respect to the Epoch.

Elaborations can introduce new
goals, These are called subgoals,

Before

This is also th [tem Name: This is also the |
is also the . ; !
All or part of an start Fime poinf.‘J State Name: end time point.
elaboration can be Subgoal Name [parameters]
conditional
Non-executable goals are
shown as rounded rectangles
Condition Executable goals are (ovals are okay too)
shown as rectangles

Item Name:
State Name:
Subgoal Name [parameters]

Elaborations can introduce new temporal
constraints. They are shown by solid lines
between two time points.

A temporal constraints specifies the
minimum and maximum acceptable

L - duration of the inferval between two time
r"‘;:?i‘\l/zeﬂﬂ\sesfhlgm'f#ﬁiglirs e&;tl:%rl‘h‘/)f points. The following shorthand is used:
drawn left to right, but needn't be Relative:
since the arrows are unambiguous, Precedes = [0,®]

Delay D = [D,D]
At least L = [L,o]
At most M = [0,M]

Elaborations can introduce new
time points.

Absolute (relative to Epoch):
At T = [T,T]
After T = [T,]
Before T = [0,T] y

Precondition invokes required
initial conditions wrt altitude,
attitude and velocity

Basebody: Six DOF
State: In Terminal
Descent Guidance

Proceeds, even if horizontal
velocity is still larger than desired

Thruster (Descent,
All): Force and

P Torque: Following
Terminal Descent

Guidance Control Law

Basebody:

Horizontal
Velocity wrt
Landing Site: Is
Being Damped

/ Délay TBD (60s?)

Can't start lower and meet still

terminal guidance initial conditions Outriggers:
. ™) Condition: Is
Basebody: Altitude wrt
Deployed

Landing Site: Starts
Above [TBD m]

Want no deployments
during terminal descent

Subsonic Chute:
Condition: Is
Separated

Subsonic Chute:
Condition: Is
Being Separated

Subsonic Chute:
Condition: Is
Deployed

Schedule hazard
detection early enough, p
but don't make proceeding | =] -
dependent on success

Landing Area: Hazard-
Free Locations: Known

Basebody: Horizontal
Velocity wrt Landing
Site: Is Being Damped

Thruster (Descent, All): Force
and Torque: Following
Horizontal Velocity wrt Landing

Site Damping Control Law

Basebody: Horizontal
Velocity wrt Landing Site:
Is Known to [TBD m/s]

