Proposal for a paper to be presented

at APC CA S°94 in Taipai

Title: APPLICATION OF DFT FILFER BANKS AND COSINE MODULATED FILTER BANKS
IN FILTERING.}
Authors: Yuan-Pei Lin, student member, IEEE, and ). 1'. Vaidyanathan, Fellow, IEEE
Affiliation: Department of Electrical Engineering, Cdifornia Institute of ‘I'echnology
Contact author: 1'.1’. Vaidyanathan
116-81, California Ingtitute of ‘Technology
Pasadena, CA 91125 USA

Phone: (818) 395-4681, Fax:(818) 564-9307

F-mail: ppvnath@sys. caltech .edu

I. INTRODUCTION

The M channel maximally decimated filter bank shown in Fig. 1.1 has been studied extensively in
[1]-[9]. A filter bank is said to be under-deciinated if the number of channels is more than the decimation
ratio in the subband. When the system in Fig. 1.1 is alias free, it is a linear time invariant systemn with
transfer function 7'(z), as indicated in Fig. 1.1. 7(z) will be called the distortion functionor the overall

response in the following discussion.

A maximally decimated filter bank is well-known for its application in subband coding. Application
of maximally decimated filter banks in filtering or convolution was first reported in []]. The technique is
caled block filtering. Convolution through block filtering has the advantages that parallelism is increased
and data is processed at a lower rate. However, the computational complexity is comparable to that in
direct convolution. In[] O], filter banks are used to map long convolutions into smaller ones in the subbands.

Computations are then performed in parallel at a lower rate.

I T'he work described in the paper was carried out by Jet ]'repulsion Laboratory and California Institute
of ‘Jethnology under a contract with National Aeronautics and Space Administration.
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More recently [9], another type of filter bank convolver has been developed. 1 n this scheme the convo-
lution is performed in the subbands. Quantization and bit allocation of subband signals are based on signal
variance as in subband coding. Consequently for a fixed rate, the result of convolution is more accurate than
direct convolution, This type of filter bank convolver aso enjoys the advantages of block filtering, parallelism

and lower working rate. Nevertheless, like block filtering, there is no computationa saving.

in this proposal, under-decimated systems are introduced to solve the problem.Fig.1.2 shows the
setup of the under-decimated system; it has 2Mf channels but is decimated only by M.'T'wo types of filter
banks can be used in the under-decimated system, the D¥'T' filter banks and the cosine. modulated filter
banks. They are recognized for their low complexity.Inboth cases, the system is approximately alias free
and overal response is equivalent, to a tunable multilevel filter. Properties of the DF1" filter banks and the
cosine modulated filter banks can be exploited to simultaneously achieve parallelism, computational saving
and lower working rate. Furthermore, for both systems the implementation cost of the analysis bank is
comparable to that of one prototype filter plus some low complexity matrices. The individual anaysis and
synthesis filters have complex coeflicients in the DF'T' filter banks but have real coeflicients in the cosine

modulated filter banks.

outline of this report

This work is organized as follows: Sec. 11 is devoted to the construction of the new 2M channel under-
decimated DF'T" filter bank. Implementation and complexity of this DF'I' filter bank are discussed therein. In
a similar inanner, the new 2A4 channel cosine modulated filter bank is discussed in Sec. 111. Design examples

are given in Sec. 1V.
Not ations:

1. Boldfaced lower case letters are used torepresent vectors and boldfaced upper case letters are used to

represent, matrices.

2. 'The notations A%, A* and At represent the transpose, conjugate and transpose-conjugate of A, re-
spectively. The ‘tilde’ notation is defined as follows: K(z): At (1/z+).

3. Matrix I, denotes a k x kidentity matrix and J; denotes a & x k reversal matrix with

0 01

0 1 0
Jp = :

1 0 0



4. 'The delay chain ¢y (2) is the vector

(‘.k(Z) — [1 z-l . .Z—(k'_l)]7v

5. The unit-pulse, denoted as é(n),is defined according to

_ i n=0,
8(n) = { 0 otherwise.

6. 'The value of the function, |2, is the largest jpieger less or equal to 2.

7. The 2M x 2M DFT matrix, W, is defined as [W],n = W™, The quantity W is given by w = ¢=3"/M
where j=+/-1.

8. A filter H(z) is caled a Nyquist(M)filter if its impulse response h(n) satisfies k(M n)= cé(n), for some

constlant C.

H. DFTFILTER BANKS ANI) ITS APPLICATION IN TUNABLE MULTILEVEL FILTER-
ING

The systemin Fig.1.2 is called aDF'T filter hank if the analysis filters are shifted versions of the same
prototype. Similarly for synthesis bank. 'T'he prototype of analysis bank and the prototype of synthesis
bank need not be the same. Tobe more specific, let Po(2)be the prototype Jilter of the analysis bank and
Qo(z) be the prototype filter of the synthesis bank. ‘he filters Py(z)and Qx(2),k = 1,2, ..., 2M —1,are

respectively the shifted versions of 7o0(z) and Qo(z).
Pe(z) = Po(zW*),  Qu(z) = Q(zWF¥),  k=1,2,...2 M -1

Notice that on unit circle Pi(z) IS only a shift of py(2) by ka/M, since () = Po(efw=kn/M)) Fig. 2.1

shows this relationship. The analysis filters and synthesis filters have the following form.
Hi(2) = ay Po(zW*), ancl Fir(z) = a Qo(zWH"), w = ™M, (2.1)

(‘The definition of DF'I" filter bank here is dightly different from the conventional DFT filter banks [8].) It
follows that Hy(e/*) is just a shift of Po(e7“) by kn/M except a scalar. Similarly for synthesis filters.

We now show that with proper design of the two prototypes, this D¥T' filter is approximately alias free
and the overall response is equivalent to a tunable multilevel filter. Moreover, the overall response canbe
a real-coefficient, linear-phase filter as desired. Efficient implementation of the DF'T" filter bank will aso be

discussed.



(1) Suppression of aliasing error

Consider the under-decimated system in Fig. 1.2, a 2M channel filter bank decimatedby M. The
suppression of aliasing error due to downsampling in the subbands can be explained pictorially. T'ake the
first subband as an example. Because of decimation followed by expansion, there will be M — 1iinage copies
of Ho(2), as shown in Fig. 2.2. We can see from Fig. 2.2, these image copies will be suppressed if both
Ho(z) and Fy(z) have stopband edges less thanx /M. When the spectral supports of Fy(z) and the image
copy of Ho(z) do not overlap, thealiasing error will be suppressed to the level of the stopband attenuation of
Ho(2) or Fo(z), which is equivalent to the stopband attenuation of Fo(2) or Qo(2).The reasoning of aliasing

suppression in the other subbands follows.

We now present the mnathematical counterpart of the above discussion. The output, )?(z), is related to

the input, X(2), by

M-1
i(z) =) Ai(2)X (W), (2.2)
i=0
The dias transfer function, A;(z),is defined as
oM -1
Ailz) = 37 D HkGWH)E(2). (23)
k=0
The system in Fig. 1.2 is alias free if A;(2)=0, for i=1,2,.... M -1

With andysis filters and synthesis filters chosen as in (2.1), A;(z) can be written as

1~ 2 2i4k 2i
Ai(z) = ﬁkz_:olakl Po(zW YQo(z W™, (2.4)
Assume
Po(zWH)Qo(2)~ O, i=1,.. .,A4 -1. (2.5)

This assumption is reasonable if Fp(z)and Qo(z) have stopband edges less thanw/M and large enough

stopband attenuation. Eq. (2.5) gives us
HiGWE YR (2) =0, k=0,1,..,2M - |, i=1,2,.. ., M- |,

which implies A;(z)~ 0. We conclude that the DF'T" filter is almost alias free, Also notice that the degree

of alias suppression improves with the stopband attenuation of the two prototypes.
(2) The overall response of the DFT filter bank

For a 2A4 channel system decimated by M as shown inFig. 1.2, the distortion function'(z) can be

expressed as [8]
]'HW -1 .
T(z) = = > He(2)Fie(2). (2.6)

M k=0
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Let Ro(z) = Po(2)Qo(2). Substitute the expression of Hi(z) and Fi(z) in (2.1), then

2M 1

) 1 ok
1) = o > lak|? Ro(ef = kn/AD) (2.7)
k=0

When Ro(z) is a Nyquist(2M) filter , it can be shown the addition of Jax|2Ro(e? = *7/M)Yinkq. (2.7) will
not result in any bumps or clips in the response of 7'(z) because of the Nyquist property of I'O(z). The

definition of a Nyquist filter is given in Sec. 1. Detailed explanation can be found in [8].

With (2.7), we can plot a typical magnitude response of 7'(z) asin Fig. 2.3, which shows that the overall
response is equivalent to a multilevel filter. Since the value of ¢4 can be chosen freely, 7'(z) is actualy a
tunable multilevel filter.

Remarks
1. If Ro(2) is a real filter and we choose aj=agpr—i,k = 12, .. M, it can be verified that he resulting

7'(z) is aso real.

2. Let Ro(2) be linear-phase and the order of Ro(2),N,,be a multiple of M.In this case Ro(zW?*) is
symmetric . By (2.7), this implies that 7'(z) has linear phase,

Suinmarizing, we have shown that if Ro(z)is Nyquist(2A1) and (2.5) is valid, the DF'I' filter in Fig. 1.2
is nearly alias free and the overall response is equivaent, to a tunable multilevel filter.

(3) Tmplementation of the DFT filter banks

There exists efficient implementation for the DF'I filter banks. To see this, express Fo(z) as
2M -1
Po(#) == L | G P (2.8)

i=0

where F;(z)is theithtype 1 polyphase component of F0(2) [8]. The analysis filters can be rewritten as

2M -1
He(z) = axPo(zWh) = Y Ei(MYW ™ 2"k = 0,1, ,2M — 1. (2.9)
i=0
Lel.
h@z) = [Ho(2) HI2) . . . Ham-1(2)] (2.10)
I'he matrix representation of (2.9) is
ap 0 ... 0 Eo(2?M) 0 1
0 a ... 0 0 Ei(?M) . 0
l'(z) = . . . . w . . . . can(2) (2.]])
0 0 cev Qopf g 0 0 ]‘/'QM._l(ZzM)



observing (2.1 1), we can draw the polyphase implementation of the analysis bank as in Fig. 2.4. 'The

implementation cost is that of the prototype filter Po(2) plus a DF1 matrix. Similarly for the synthesis
hank.The computational complexity of the analysis bank is comparable to that of the analysis prototype
filter plus one NFT' matrix. Notice that al the computations involved in the filter bank are performed after

the M-fold decimators; lower rate and lower complexity are achieved at the saine time.

IITI. COSINE MODULATED FILTER. RANKS AND ITS APPLICATION IN TUNABLE
MULTILEVEL FILTERING

in the DFT' filter bank described in previous section, the analysis and synthesis filters has complex
coefficients. If the individua filters are desired to have real coeflicients, then we can use the new under-
decimated cosine modulated filter bank to be discussed in this section.

The system in Fig. 1.2 is said to be a cosine modulated filter hank if al analysis and synthesis filters
are generated by cosine or sine modulation of one or two prototype filters. in this section we introduce the
new under-decimated cosine modulated filter bank. Thesystemn is nearly alias free, Aliasing error decreases
as the stopband attenuation of the prototype increases. individual analysis and synthesis filters have real
coefficients. We can design the prototypes so thatits overall response is alinear-phase multilevel filter.
Furthermore, there exists eflicient implementation of this cosine modulated filter bank. I'he implementation
cosl of the analysis bank is that of the prototype filter plus two DC'T matrices (Appendix A). The complexity

of DCT matrices is only of order M log(M)[1 1]. The same for the synthesis bank.
(1) Construction of the new cosine modulated filter bank

in the cosine modulated filter bank, al analysis and synthesis filters have real coefficients. Each filter
has positive and negative spectral occupancy as opposed to single-sided spectral occupancy in the DFT' filter
bank. This incurs a problem that we do not have in the D¥'I' filter bank. Details and a proposed solution

of this new problem will be given in subsequent discussion.

Let P’o(2) and Qo(z) berespectively the prototype filters of the analysis bank and the synthesis hank.
The definitions of Px(z) and Qx(z) are as in Sec. 11."l'o get real-coefficient analysis and synthesis filters from

the prototypes, we can combine Px(z) and I'-k(.Z)111
Hy(2) = ap P(2) + a P_y(2), Fi(z) = bk Qur(2) + 03 Qi(2), k=12, . . ., M- 1.
Since Po(z) and P’p(2) are already real filters, we can directly choose
Hi(2) = 2ax Pr(2), Fr(2) = 20,Q(2), k=0or M.
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Fig. 3.1 shows the spectrd supportsof the analysis filters. The stacking of the spectral supports of the

synthesis filters is similar.

Aliasing error created in the Oth and the Mthsubband cau be suppressed on the synthesis side as wedd
in the DF'T filter bank. "The situation in the other subbands is different because now Hg(z) and Fi(2),
k=1,2,.... M-1, ae bandpass filters. Referring to Fig 3.2, decimation followed by expansion in the
subbands will cause one image copy of P.(z)to overlap with Q_x(z),k= 12, ..., M — 1 Thistype of
aliasing error can not be suppressed in the synthesis bank.

Our solution to this problem is to introduce a second subsystem that has exactly the same aliasing error
to cancel the existing one. Let the second subsystem have analysis filters Hj(2z) and synthesis filters F}(2),

k=12...,M—1 "To create the same aliasing error, the filters of the second subsystem are required to

have similar stacking as that of the first subsystem.In particular,
Hi(2) = afp Pe(2) + af Pok(2),  Fi(2) = 0Qu(2) + 05 Q-x(2), k=1,2,... M 1.

T'he configuration of the analysis filters in the second subsystem is shown in Fig. 3.3. Notice that the spectral

occupancy of Hg(z)and Hps(z) are not covered in the second subsystem].

The setup of the new system is now complete, Fig. 3.4. It is a connection of two subsystems. The
first subsystem has M 41 channels and the second subsystem has M — 1 channels. The whole system is
under- decimated;it has 2M channels hut is decimated only by A4. 'T'he anaysis and syntheis filters canbe

sunnnarized as follows.

Hi(2) = 2ax Pi(2), k=0, A4,

Hi(z) = ar Pe(2) + a3 P-i(2), k=1,2,...,M~1

)

Hi(2) = afl Pe(2) + af Py (2), k=1,2...,M11,

(3.1
Fi(z) = 26 Qr(2), k=0, A4,
Fi(2) = b Qi (2) + 01Q -1 (2), k=1,2,..., M-,

1(2) = beQu(2) + by Qoi(z),  k=1,2,..., M1
The values of ax, a, bk, and b}, will be determined later.
in the following we show that with proper design of the prototypes and appropriate choices of ay,al,
by, and b, this filter bank is aliost alias free. ‘The overall response can be designed to be a linear-phase

tunable multilevel filter.




(2) Cancellation and suppression of aliasing crror

As we mentioned in the construction of filters, the aliasing error inthe Oth and the Mthsubbands will
be suppressed in the synthesis bank. Only the subbands with bandpass filters require aias cancellation.

Consider the kthsubband,] <k< M - 1. Duelo decimation followed by expansion, F(z) has M - 1
image copies and P_(z) aso has M - limage copies, ‘The image copy of Fk(z)willbe suppressed by
Qk(z) provided that both Fo0(2) and Qo(2) have stopband edges less than =/M and large enough stopband
attenuation. Of the M — 1 image copies of Pk(2), M — 2 of them are in the stopband of Q_x(z)and hence
will be suppressed by @_i(z)as depicted in Fig. 3.2. However, one of the image copies of P(z) will fall
oniop of the spectral support of Q_,(z). in the kthsubband of the second subsystem the same aliasing
occurs. 1 t can be shown that the aliasing error of the second subsystem cancels that of the first subsystem

if the values of a,bk,a) and b} are set properly. Mathematical proof of this claim is as follows.

With filters constructed as in (3.1) and the expression of alias transfer functions in (2.3), we have

Ai(z) = X]J(A V() + AP + AP (2) + A,“’(Z)) (3.2)

M-1
where  A(2) = (aobo + abbo). w(z W% Qo(z + Z(akbk + @i Ui ) P (W) Qi (2)

k=1
M-1 )
AN 2) = 3 (@b + af V) Pop (W ) Qu(2)
k=1

M~1
AP (=) = 37 (bl + b )Py (zWH) Qi (2)
k=1

M-1
AN (2) = (apby + aoby) Po(: W) Qu(2) Y (akbj + af 65 ) Py (zW ) Qi (2).
k=1

Assume Po(z) and Qo(z) satisfy (2.5). It follows that A{)(z)~0 and A (2)~0.Let ag,k = O,..., M be

rea and choose
by = ay, k=0, M

’ (3.3)
dy, = —jax, Yp=jap, k=1 ..., M~1
If ag, by, af,and b) are chosen as above, it can be verified that ajby + @bl = 0, which implies Agz)(z) =
AP (2) =0,
So Ai(2)= 0, is ensured provided that (2.5) is validand ay,b,a},and b}, are chosen according to (3.3).

With Eq. (3.3), we can write clown the time domain description of the analysis andsynthesis filters.
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Let po(n) be the impulse response of 1%(z)and go(n)be the impulse response of Qo(z).

hg(n) = 2axpo(n) cos(knn /M), k=0,1,..., M,
1 (z) = axpo(n) sin(knm /M), k=1,2,. . M-,
(3.4)
Ji(2) = 2axqo(n) cos(knw /M), k=0,1,..., M,
Ji(n) = axgo(n) sin(knm /M), k=1,2,...,M-1
From the expression in Eq. (3.4), we can see that each individua filter is sine or cosine modulation of
the prototype filters.
(3) Expression of the overall response 7'(z)
Using (3.1)and (2.6), we get
9 M
joy n L 2 (w—kn /M
T g7 2Pl 77 0) (35)
The above expression for the overall response is similar to that in the case of DFT filter bank. If Ry(z) isa

Nyquist(2Mf) filter, this isa tunable multilevel filter hank like in DFT filter bank.
(4) The phase of the overall response 7'(2):
The approximate expression for? (z) inEq. (3.5) has linear phase provided that Ro(2)is linear-phase.

The reason is given below. The linear phase property of Ro(z) entitles us to write
Ro(ej“') - c—ja’NT/QR(w), (3.6)

where R(w) is a real-valued function and N, is the order of Ro(z) Substitute (3.6) into (3.5), we get

M
. 4 . ;
T(e!) Me""""“/? E |ak|zc0s(7\%kng) (R(w ~kx/M + Rw + k?r/M)),
k=0

which show that7'(z) has approximate linear phase.

Notice that if Qq(z) is the time reversed version of Po(2), i.e, Qo(z) = ~NrPy(2), then Fi(2) and Fi(z)

are the time reversed version of Hx(2) and Hi (%), respectively. In this case, we have

T(z) =

M-1
(Z ZOLICEDY H()T(2))-

"This verifies that the filter bank indeed has a linear-phase overall response.

Summarizing, we have shown that the filter bank in Fig. 3.1 is equivalent to a linear-phase tunable

multilevel filter if the following two conditions hold. (1) The prototype filters Fo(z) and Qo(2) satisfy kq.
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(3.5). (2) Ro(z) is linear phase and close to a Nyquist(2M) filter. Implementation cost of the analysis bank

as shown in Appendix A is that of the prototype filter I3(2) plus two DCT matrices.
Alternative stacking of filter responses

InFig. 8.1and Fig. 3.3, we show the configuration of tile analysis filter for the under-decimated
cosine modulated filter bank.It can be shown, however, that a different, stacking can aso be applied. This
aternative is shown in Fig. 3.5. The filter bank can bestill conceived as a connection of two subsystem,
both with M channels. The spectral supports of the second set of analysis filters are exactly the same as
the spectral supports of the first set of analysis filters. The same holds for synthesis bank. In this case,
the discussion of alias cancellation and the argument that the overall response is equivalent to a tunable

multilevel filter continue to hold after minor adjustments.

VI.DESIGN EXAMPLE

We now present one design example of the under-decimated filter bank. The cosine modulated filter

bank is usedin this example.

Fzample 5.1 Tunable multilevel filler. The system has 16 channels. In this case M = 8. The analysis bank
prototype filter Fo(z) is linear-phase with order N, = 110, stopband attenuation 75 dB, passband edge
wp = 0.047 and stopband edge w, = 0.0987. The synthsis bank prototype Qo(2) is chosen as the time
reversed version of 'o(z). As elaborated in Sec. 111, the resulting overall response will have linear phase.
Fig. 5.1 (&) show the inagnitude response of I’O(2).

After designing the prototype filters, the values of a; can be changed freely to obtain the desired
overall response, 7'(z). For instance, we set ap = a3 = 1,a2 = az3= a4 = 0,05 = ag¢ = ay = 0.7 and
as = a,= a,= 0.3. The magnitude response of the resulting 7°(2) is plotted in Fig. 5.1(b). Since 7'(z) has
linear phase) we did not show the phase response. The corresponding dB plot of Fig. 5.1 (b) is shown in Fig.

5.1(0).
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Appendix A.
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n=0
where G,,(z) is the nth type 1 polyphase component of Fo(z).T'hen

2M 1
Pu(z) = }: Gn(2®M) "W —Hn, (A])
n=0
Rewriting analysis filters in (3.2) in terms of the polyphase components of Po(2) with ag, b, @}, and b}, as
in (3.4), we obtain

2M -1

Hi(z) = 2 nz:% ar G (22M ), n cos(-]:r—lkn), k=01,..., M,
2M -1 (A'Q)
Hi(2) = 2§Oak(;n(22m)z—nSi,,(%kn), k=12, ...,M_1

Define a 2M-component vector h(z) given by

]’]n(z)

h(z) = }}11]2!((; ))

Hpo4(2)

Using (A .2), h(z) can be written as

e EAB) (S A () 0 () o

where gi(z), A,and A are diagonal matrices with

[go(z)]kk = Gk(z), [g,(z)]kk = Gk+M(z), k= o,1,..., M 1, (A4)
[Al] kk = (’_])k) k:O, ]a-"v ]\4,
(A.5)
Aodgr = (DX k=1,2,..., A|-].
[A]]kk:ak, k: 0,1,..., ]\j’
(A.6)
[AQ]kkzak, L‘:],?,,A{"]
And C and S are (A4 + 1) x M and (M —1)x M matrices with
[c].,r,n = cos(—%mn),?’n:ﬂ,...,}\4,11 =0,...,M-—1,
A7)

and [S]mn:sin(%mn), m=1,... \M-1, n=0,...,.M -1,
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Define two M x 2M matrices
T]’:(C A]C) ancl TQ:(S AQS)

From (A .3), we can draw Fig. A], theimplementation of the 2M channel cosine modulated system. The

a; (n)
( Hg(n) )“

on n will bedropped for convenience. As indicated inFig. A. 1, d;anddz are the outputs of T,and T,

input to Ty and T2, a(n), canbe partitioned into two M x1 vectors; a(n) = Their dependence

respectively.

d; = Tja, and dy = Tyb.

From the definitions of Tyand T,, we know
dy = Ca; 4+ A Cay, and dy = Sa; + A2Sas. (AS)

Using the property of C and S|[1 3], it canbe verified that the above equation becomes

d] =C (ﬂ] -+ (g JA?..] > 82) + [82]0 r, (lg =8 (a] - (8 JA? ]) ag) y (Ag)

where [#2]o is the first element of az,andr = [1 -1 ., . (—~1)-1]. From Eq.(A.9), we observe that the
major computation in T,is only the matrix C and the major computation in T,is the matrix S. Matrices
Cand S can be implemented by fast algorithms for DCT and DST' matrices {1 1]. The implementation of
synthesis bank is similar.

From the implementation of the cosine modulated filter bank, Fig. A.], we observe that the implementa-
ion cost of the analysis bank is that of the analysis prototype filter plus two DC'T' matrices. Computational

complexity follows.
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Fig. 1.1 M channel maximally decimated filter bank.
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Fig. 2.2 Image copies of HO(Z) due to decimation followed by expansion
and the spectral support of Fe(z).
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Fig. 2.4 Efficient implementation of the analysis bank of the 2M channel DFT
filter bank. The DFT matrix, W, as defined in Sec. | is of dimension 2M by 2M.

Hy H, HI  Ho HI Hy , Hum
XN - XN
-t «(M-1 )t/M  -RIM O =/M (M-1 )n/M=n
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Fig. 3.4. The setup for the new under-decimated cosine modulated filter bank.
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Fig. 5.1. Example 5.1. (a) The magnitude response of the prototype filter, PO(2).
(b) The magnitude response of the overall response T(z2).
(c) The magnitude response of the overall response T(z) in dB plot.



