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ABSTRACT

A frequency domain method is developed for statistical multivariable plant set estima-
tion. The estimation of a plant “set” rather than a point estimate is required to support
many methods of modern robust control design. The approach here is based on using
multisinusoidal input designs, and acquiring multivariable data from a sequence of SIMO
experiments. Results for the multivariable case extend earlier results developed for the
SISO case. The data is preprocessed using DFT and signal processing methods, and cer-
tain key statistical properties of the estimators are presented in the multivariable case.
These properties lead to a precise characterization of the plant set to a specified statistical
confidence, e.g., (1−α) · 100%. The significance of this result is that if a robust controller
is designed to provide some specified level of stability or performance for all plants lying in
the additive uncertainty set, then with probability 1−α the controller will work as planned
when applied to the true system.

An advantage of statistical uncertainty characterizations is that they are potentially less
conservative than deterministic uncertainty characterizations. For example, the notion
that noise disturbances tend to “average out” over time is missing from deterministic
bounded noise treatments.

1. INTRODUCTION

Consider the multivariable system with output noise, given by,

y(k) = P(z−1)u(k) + v(k) (1)

where P(z−1) is the q-input, r-output multivariable LTI plant and v ∈ Rr is an output
vector disturbance. It is desired to identify this system in the following form,

P(z−1) = P o(z−1) + ∆A (2)

where P o(z−1) is a nominal estimate of the true plant P(z−1), and ∆A is the additive
uncertainty defined as ∆A = P − P o. Since the true plant is not known, it is desired to
represent the additive uncertainty in the form

∆A = ∆WA (3)
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such that ∆ is norm bounded (i.e., such that ||∆||∞ ≤ 1) and such that WA is a minimum-
phase transfer function weighting matrix. The filter matrix WA is then typically incorpo-
rated into the control design, to ensure robustness properties over the additive uncertainty
set.

The goal of this paper is to identify a nominal plant estimate P o, and a weighting filter WA

such that the relation P = P o +∆WA holds (for some ||∆||∞ ≤ 1) to a specified statistical
confidence 1−α specified by the designer. It is then a separate problem in modern robust
control synthesis to find a compensator C that has desirable stability and performance
properties for all plants in the uncertainty set defined by P o and WA [1][7].

The rationale is that if C can ensure some level of performance for all plants in the additive
uncertainty set defined by WA, then the controller will work as designed when implemented
on the real plant with probability 1 − α. This approach effects a marriage between the
hard uncertainty bounds used in modern H∞ robust control designs, and the soft bounds
obtainable using statistical methods.

2. A-PRIORI INFORMATION

The estimation of a plant set requires the specification of certain a-priori information. The
assumptions are given explicitly in this section.

First, the following definition will be needed.

Definition 1 A MIMO transfer function G(z−1) is said to be in D(M, ρ) if the impulse re-
sponse matrix sequence {g(kT )}∞k=0 defined by the Z-transform relation

∑∞
k=0 g(kT )z−k =

G(z−1) satisfies,
σ(g(kT )) ≤ Mρk

for some ∞ > M > 0 and 1 > ρ ≥ 0.

The main usefulness of Definition 1 is due to the next lemma.

Lemma 1 Let G(z−1) ∈ D(M, ρ). Then the derivative of G on the unit circle can be
uniformly bounded from above as follows,

σ
(dG(e−jωT )

dω

) ≤ TMρ

(1 − ρ)2

Proof: see [6].

The bound in Lemma 1 insures a certain smoothness in G and allows one to overbound
errors incurred interpolating frequency data in-between grid points.

Assumption 1 The true plant P(z−1) is a stable unknown linear time-invariant (LTI)
q-input r-output multivariable transfer function assumed to be in D(M, ρ), where M and
ρ are assumed known.

The experiment design is now briefly described. Consider the periodic input excitation
design into the n1th actuator, composed of a harmonically related sum of sinusoids,

us(k, n1) =
ns∑
i=1

√
2αi(n1) cos(ωikT + φi(n1)) (4)
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where ωi = 2πi/Tp, Tp = NsT , ns ≤ Ns/2. The power is normalized as,

ns∑
i=1

αi(n1) = 1 (5)

where the relative power in each component {αi(n1) > 0, i = 1, ...ns} is assumed speci-
fied. In order to minimize peaking in time domain the sinusoids are phased according to
Schroeder [20] as,

φi(n1) = 2π
i∑

j=1

jαj(n1) (6)

(Here, a slightly modified form of the Schroeder phase is used in (6), as derived in Young
and Patton [22]). More recent expressions which use the Schroeder design as a starting
point for further reducing the crest factor of the multisinusoid signal (4) can also be used
[11]. The Schroeder phasing (6) is used here mainly for implementation convenience. The
actual choice of phase does not effect the analysis or change any of the main results herein.

Assumption 2 Data for the multivariable case is assumed to be taken by performing q
separate single-input multiple-output (SIMO) experiments, using a multisinusoidal exci-
tation of the form (4) with the full number of sinusoids ns = Ns/2 for each experiment.

Assumption 3 The output disturbance v(k) ∈ Rr can be represented by v(k) =
W (z−1)d(k) where d(k) ∈ Rr is a white zero-mean Gaussian vector noise sequence nor-
malized such that E[d(j)dT (k)] = δjk · I; W (z−1) is a diagonal matrix of filters

W (z−1) = Diag
{
W (z−1, 1), ..., W (z−1, r)

}
(7)

where W (z−1, n2) is a minimum phase (stable and stably invertible) transfer function,
n2 = 1, ..., r.

Assumption 4 Data from each SIMO experiment is taken while the system is in periodic
steady-state.

Assumption 5: The input period NsT of the multisinusoidal design (4) is long compared
to the time constants of noise filter W and its inverse W−1.

In this formulation, the designer has the freedom to choose the frequency shaping {αi(n1)}
and the number of periods of data collected m(n1) in each SIMO experiment.

3. PREVIOUS RESULTS

Various methods of plant set estimation have been given in the literature. The various
approaches can be roughly divided depending upon whether they use time-domain esti-
mation as in Kosut [14], Younce and Rhors [21], Goodwin and Salgado [12], or frequency
domain estimation as in Lamaire et. al. [16], Parker and Bitmead [17], Bayard [3], or De
Vries and Van den Hof [8][9].
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Methods within each category generally differ based on the types of inputs allowed (e.g.,
second-order stationary, white noise, periodic, multisinusoidal, persistent exciting, etc.),
the types of quantities being estimated (e.g., plant dynamics, noise PSD’s, unmodelled
dynamics), model parametrization (e.g., pole-zero models, FIR models, etc.), assumptions
on the noise (e.g., bounded noise, bounded noise DFT, Gaussian noise, etc.), and the type
of a-priori information required (i.e., smoothness priors, open-loop damping, model order,
relative degree, etc.).

Related approaches which give hard bounds on the identified model error can also be found
in Helmicki, Jacobson and Nett [13] and Gu and Khargonekar [10]. However, these methods
are not directly comparable since they start by assuming frequency data is available in a
specific form (i.e., with hard error bounds) and do not explicitly separate the error into
noise and unmodelled dynamics.

A specific method for SISO plant set estimation using multisinusoids has been given in [3]
for the case of:

(i) Gaussian noise d(k)

(ii) Data taken in steady-state

(iii) Noise shaping filter of form W = σW (z−1, 1) where filter W (z−1, 1) is known, and σ is a
scale factor which can be known or unknown.

These results were generalized by De Vries and Van den Hof [9] as follows,

(i) non-Gaussian noise

(ii) Data not necessarily taken in steady-state

(iii) The weighting filter W (z−1) is completely unknown

Eliminating the need for a-priori knowledge of the noise coloring filter W (z−1) is par-
ticularly useful in practice. The main cost of these improvements is that the expressions
obtained in [9] are only valid asymptotically (valid as the input period NsT becomes large).
However, exact expressions are difficult to obtain in the case where noise is estimated along
with unmodelled dynamics, and asymptotic results of this type may be unavoidable for
bridging the gap between theory and practice.

The present paper will extend the SISO results in [3] to the multivariable case. In this
extension, a philosophy will be used similar to [9], in that a-priori knowledge of W will be
avoided at the expense of obtaining only asymptotic results (i.e., valid as NsT becomes
large).

4. MIMO PLANT SET ESTIMATION

An additive error ∆A(z−1) is used to characterize the mismatch between the true plant
P(z−1) and a nominal plant estimate P o(z−1), i.e.,

∆A(z−1) = P(z−1) − P o(z−1) (8)

It will be useful to define an additive uncertainty set as the set of plants ΩA(P o, �A(ω))
associated with a specified overbound �A(ω) on the additive error, i.e.,
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ΩA(P o, �A(ω)) = {P : σ(P − P o) ≤ �A(ω), for all ω ∈ [0, π/T ]} (9)

This notion is extended to the specification of a statistical overbound �1−α
A (ω) in the fol-

lowing definition,

Definition 2 �1−α
A (ω) is said to be an overbound on the additive uncertainty with statistical

confidence (1 − α) × 100% if,

Prob{P ∈ ΩA(P o, �1−α
A (ω))} ≥ 1 − α (10)

The significance of this definition is that �1−α
A characterizes (to statistical confidence (1 −

α) × 100%) a set in which the true plant P belongs. Hence, if a robust controller is
designed to provide some specified level of performance for all plants lying in the additive
uncertainty set ΩA(P o, �1−α

A (ω)), then with probability 1 − α the controller will work as
planned when applied to the true system.

The calculation of a statistical overbound �1−α
A from pointwise overbounds is given in the

next result.

Lemma 2

Given discrete-time plant P(z−1) ∈ D(M, ρ), assume that noisy frequency domain data
{P̂ (ωi)}N

i=1 are available on a uniform grid on the unit circle ωi = i∆g, i = 1, ..., N with
grid spacing ∆g = ωi+1 − ωi = π

TN
. Assume that the accuracy of each data point can be

characterized by the quantity εi such that the event Ei,

Ei : σ(P(ωi) − P̂ (ωi)) ≤ εi (11)

is satisfied with at least probability 1 − κ at each grid point i. Here, the events Ei i =
1, ..., N may or may not be jointly statistically independent. Let S(P̂ , ω) be a linear spline
interpolant to the data {P̂ (ωi)}N

i=1, i.e.,

S(P̂ , ω) =

{
P̂ (ωi) + (ω−ωi)

∆g
(P̂ (ωi+1) − P̂ (ωi)) for ω ∈ (ωi, ωi+1]

P̂ (ω1) for ω ∈ [0, ω1].
(12)

and let P o(z−1) be any stable parametric model fit to the data. If �1−α
A (ω) is defined as,

�1−α
A (ω) = B1(ω) + B2(ω) (13)

where,

B1(ω) =

{
εi+1 + σ(S(P̂ , ω) − P̂ (ωi+1)) + ∆gTMρ

(1−ρ)2 for ω ∈ (ωi, ωi+1]

ε1 + ∆gTMρ
(1−ρ)2 for ω ∈ [0, ω1]

(14)
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B2(ω) = σ(S(P̂ , ω) − P o(ω)) (15)

then, �1−α
A is an overbound on the additive uncertainty with statistical confidence,

1 − α =
{

(1 − κ)N if Ei, i = 1, ..., N are independent
1 − κN otherwise

(16)

i.e., �1−α
A (ω) satisfies,

Prob{P ∈ ΩA(P o, �1−α
A (ω))} ≥ 1 − α

Proof: The result proved identically to Theorem 2.1 in Bayard [3], by replacing absolute
values | · | of scalar quantities with maximum singular values σ(·) of matrix quantities.

Intuitively, the overbound �1−α
A (ω) in (13) can be thought of as the sum of three terms: a

curve fit error B2(ω); an estimation error at the grid points εi; and an interpolation error
between grid points B1(ω) − εi.

Values for M and ρ will be assumed known a-priori (they may be known from the physics
of the process, practical experience, or can be found by impulse or step response experi-
ments). Systematic methods for finding multivariable data {P̂ (ωi), εi}N

i=1 with the desired
properties in Lemma 2 will be the main focus of the remainder of this paper.

5. DATA ACQUISITION AND PROCESSING

Consider a single-channel input design us(k, n1) applied to the n1th actuator, with design
weights αi(n1), n1 = 1, ..., q of the multisinusoidal form (4). The system is allowed to
reach periodic steady-state, at which time the plant response at the n2th sensor is denoted
as ys(k, n2, n1) for each sensor n2 = 1, ..., r. Consider breaking the data into windows
which are precisely one period long in length, and denote the output data from the �th
period as,

y�
s(k, n2, n1) = ys(k + (� − 1)Ns, n2, n1) (17)

for k = 0, ..., Ns − 1 and � = 1, ..., m(n1). It is assumed that m(n1) periods of output data
(i.e., y�

s(k, n2, n1), � = 1, ..., m(n1)), are collected at steady-state.

This process is repeated for q SIMO experiments n1 = 1, ..., q, corresponding to a separate
experiment from each of the system’s q actuators. The frequency shaping {αi(n1)} of the
multisinusoidal design (4) and number of periods m(n1) of data collected, can be chosen
differently for each SIMO experiment. For notational convenience, the total number of
data windows acquired over all experiments is defined by,

m
∆=

q∑
n1=1

m(n1) (18)

Under Assumptions 1-5 one can construct the following estimates and statistical distribu-
tions [5],
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DFT Plant Estimator

P̂ (ωi, n2, n1) =
Y (ωi, n2, n1)

U(ωi, n1)
; n1 = 1, ..., q; n2 = 1, ..., r (19)

Y (ωi, n2, n1) =
{

1
m(n1)

∑m(n1)
�=1 Y �(ωi, n2, n1) for ωi or ωNs−i ∈ us

0 otherwise
(20)

Y �(ωi, n2, n1) =
Ns−1∑
k=0

y�
s(k, n2, n1)e−jωikT (21a)

U(ωi, n1) =
Ns−1∑
k=0

us(k, n1)e−jωikT (21.b)

It is noted that P̂ (ωi, n2, n1) is defined only at points of nonzero energy in the input (i.e.,
for i such that ωi or ωNs−i is in us).

SIMO-Data Estimates

|Ŵ (ωi, n2|n1)|2 =
∑m(n1)

�=1 |Y (ωi, n2, n1) − Y (ωi, n2, n1)|2
Ns(m(n1) − 1)

(22)

(2m(n1) − 2)|Ŵ (ωi, n2|n1)|2
|W (ωi, n2)|2 ∼ χ2(2m(n1) − 2) (23)

αi(n1)m(n1)Ns

2|Ŵ (ωi, n2|n1)|2
· |P̂ (ωi, n2, n1) − P(ωi, n2, n1)|2 ∼ F (2, 2m(n1) − 2) (24)

MIMO-Data Estimates

|Ŵ (ωi, n2)|2 =

∑q
n1=1

∑m(n1)
�=1 |Y (ωi, n2, n1) − Y (ωi, n2, n1)|2

Ns(m − q)
(25)

(2m − 2q)|Ŵ (ωi, n2)|2
|W (ωi, n2)|2 ∼ χ2(2m − 2q) (26)

αi(n1)m(n1)Ns

2|Ŵ (ωi, n2)|2
· |P̂ (ωi, n2, n1) −P(ωi, n2, n1)|2 ∼ F (2, 2m − 2q) (27)

Here, χ2(ν) denotes a Chi-Squared distribution with ν degreees of freedom and F (ν1, ν2)
denotes a Fisher distribution with ν1 and ν2 degrees of freedom, respectively.

7



A distinction is made between SIMO-data estimates and MIMO-data estimates above.
The reason is that there is separate information concerning the noise filter W from each
SIMO experiment. For example, the noise coloring filter W (z−1, n2) can be estimated by
monitoring the noise in sensor n2 in each of q separate SIMO experiments. Hence, one
can generate q separate estimates of W (z−1, n2) (denoted above as Ŵ (z−1, n2|n1); n1 =
1, ..., q), or alternatively, combine all data sets into a single MIMO-data estimate (denoted
as Ŵ (z−1, n2)).

Clearly, MIMO-data estimates (25) of the noise filter will be more accurate than the
SIMO-data estimates (22) since they use more data (i.e., note the double summation
in the numerator of (25)). However, the MIMO-data plant error statistics (27) will be
statistically dependent across each row of the transfer function, since they involve a common
noise filter estimate Ŵ (z−1, n2). In contrast, plant error statistics based on SIMO-data
(24) will remain independent across each row of the transfer function, since SIMO data
is statistically independent from one experiment to the next. For combining probabilistic
events, statistical independence is often preferred.

6. MULTIVARIABLE RESULTS

A statistical multivariable plant set estimate can be directly obtained from Lemma 2 if
one can find εi such that the event,

Ei : σ(P(ωi) − P̂ (ωi)) ≤ εi (28)

is satisfied with at least probability 1 − κ at each grid point i. Such values of εi will be
determined in this section under Assumptions 1-5.

Consider the well known Frobenious norm bound on the square of the maximum singular
value,

σ(P(ωi) − P̂ (ωi))2 ≤ ||P(ωi) − P̂ (ωi)||2f (29)

=
r∑

n2=1

q∑
n1=1

|P(ωi, n2, n1) − P̂ (ωi, n2, n1)|2 (30)

where ||X ||f ∆= tr{XT X}1/2. Using the SIMO-data error statistics (24) each of the terms
in (30) can be overbounded to probability 1 − γ by,

|P(ωi, n2, n1) − P̂ (ωi, n2, n1)|2 ≤ ρ1−γ
i (n2, n1) (31)

where,

ρ1−γ
i (n2, n1) =

2|Ŵ (ωi, n2|n1)|2
αi(n1)m(n1)Ns

· F1−γ(2, 2m(n1) − 2) (32)

and F1−γ(ν1, ν2) denotes the %(1 − γ) × 100 percentile for the Fisher distribution.

The events (31) are statistically independent for n1 �= n2 since,

1) The errors in each row of P̂ are independent by the diagonal structure of noise W
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2) The errors in each column of P̂ are independent by the SIMO data aquisition procedure
and the use of SIMO-data estimates (24) in the calculation of the percentiles in (32).

Hence, from (30) and (31) the event,

Ei : σ(P(ωi) − P̂ (ωi))2 ≤
r∑

n2=1

q∑
n1=1

ρ1−γ
i (n2, n1)

∆= εi (33)

holds with probability,
(1 − κ) = (1 − γ)q·r (34)

as desired. Furthermore, under Assumption 5, the events Ei i = 1, ..., N in (33) are
statistically independent from one frequency to the next. Hence, one can use the results
of Lemma 2 to generate an additive uncertainty overbound �1−α

A (ω) to confidence 1 − α
using the formula 1 − α = (1 − κ)ns .

Using the LPSOF algorithm [19] to overbound the nonparametric additive error �1−α
A (ω)

gives an additive uncertainty weighting filter WA(z−1) = wA(z−1) · I in the form of a
parametric filter wA times the identity matrix. The additive error is now in the desired
parametric form for use with control design software.

7. CONCLUSIONS

The present paper extends statistical plant estimation approaches to the multivariable
case. This approach produces a nominal plant estimate P o and the additive uncertainty
weighting filter WA · I, such that the true plant lies in the additive uncertainty set P =
P o + WA∆ to a prescribed statistical confidence %(1 − α) × 100. Hence, any controller
designed to be robust with respect to P o and WA will work on the true system to the same
%(1 − α) × 100 statistical confidence.

The main device used here to effect the extension to the multivariable case is to overbound
the maximum singular value of a matrix X by its Frobenious norm ||X ||f = Tr{XT X}1/2,
i.e.,

1√
min{q, r}||X ||f ≤ σ(X) ≤ ||X ||f

It is seen that this bound can become conservative if both the number of inputs q and
outputs r of the plant increases. However, the maximum singular value of a random matrix
has very complicated statistics, while the Frobenious norm is characterized completely in
terms of second-order statistics. This property has enabled the development of statistical
uncertainty bounds based directly on the measured data.

The reader is warned that the use of M, ρ information to overbound the interpolation error
in Lemma 2, can be wildly conservative in practice. This is especially true when applied to
lightly damped systems. A reasonable practical approach is to choose a “good” frequency
grid based engineering judgement, and to neglect the interpolaton error in the computation
of the uncertainty.
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The restriction of having to know the noise filters W (z−1) has been relaxed compared to
earlier treatments. This comes at a cost of having to choose a sufficiently large input period
NsT compared to the time constants of W and its inverse. A precise characterization of the
error when this condition (i.e., Assumption 5) is violated is of interest but is not presently
available. The requirement (Assumption 3) that W is diagonal is also restrictive, and effort
is underway to relax this condition.

The present method is based on a multisinusoidal input signal, which is somewhat restric-
tive compared to other approaches which allow arbitrary inputs. However, there is a great
deal of flexibility in designing the spectrum of the multisinusoidal excitation, which can be
useful in applications. Furthermore, it is expected that the multisinusoidal signal can be
applied at low levels over long periods of time, in order to extract plant knowledge with
minimal impact to normal system operations.
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