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Abstract

A reflector antenna computer program based upon a simple discreet approximation of the
radiation integral has proven to be extremely easy to adapt to the parallel computing architecture of
the modest number of large-grain computing elements such as are used in the InteliPSC and
Touchstone Delta parallel machines. It has also proven to be very efficient since, with reasonable
size reflectors, parallel efficiencies approaching 98% have been demonstrated.

introduction

One of the simplest reflector antenna computer programs is based upon a discrete
approximation of the radiation integral (Reference 1). This calculation replaces the actual reflector
surface with a triangular facet representation so that the reflector resembles a geodesic dome. The
Physical Optics (PO) current is assumed to be constant in magnitude and phase over each facet so
the radiation integral is reduced m a simple summation. "T'his program has proven to be surprisingly
robust and useful for the analysis of arbitrary reflectors, particularly when the near-fickl is desired
and surface derivatives are not known.

Because of its simplicity, the algorithm has proven to be extremely easy to adapt to the parallel
computing architecture of a modest number of large-grain computing elements such as are used in
the Intel iPSC and Touchstone Delta parallel machines.

For generality, wc consider a dual-reflector calculation, which can be thought of as three
sequential operations. (1) compute the currents on the first reflector using the standard PO
approximation; (2) utilizing the currents on the first reflector as the field generator, compute the
currents on the second reflector; and (3) compute the required field values by summing the fields
from the currents on the second reflector. The most time-consuming part of the calculation is the
computation of the currents on the second reflector due to the currents on the first, since for N x N
triangles on the first reflector, each of the M x M triangles on the second reflector required an N2
sum over the first, 1lowever, since each calculation requires the identical number of operations, the
N*triangles can be evenly distributed over the nodes, and the sum done in parallel for each of the
M*triangles on the second reflector (also evenly distributed over the nodes). In addition, the output
field values can be calculated in parallel with each node, summing its respective triangles, and the
final output field obtained by summing the ficld in each of the nodes.

For reasonable size reflectors, parallel efficiencies approaching 98% have been demonstrated.



Physical optics Algorithm

The analysis method utilized is a straightforward numerical integration of the physical optics
radiation integral. Since the incident magnetic field is required to evaluate the PO surface current on
the second reflector (see Figure 1), wc choose the following form for the radiation integral (although
the method isidentical if the E field is required):
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in which r designates the field point, r’ the source point, R =|r —r’| is the distance between them,
and R =(r —r’) / Ris aunit vector. The PO current on the surface J; is expressed as

Jo(r)=2axH(r") (2

with 2/ (r) the incident magnetic field.
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Figure 1. Reflector analysis coordinate systems and a typical triangular facet.




Let (x5, ¥s, z5) denote the coordinates of the reflector surface. For the purpose of analysis, the
reflector surface is subdivided into small triangular regions. Within each triangular region, the
actual subreflector surface is approximated by a planar surface, or facet. Now, let Rg1, Rk2, Ki3 be
vectors directed to the three vertices of the kth facet. ‘1’hen, vectors along the sides of the facct are
given by

A= R~ Ryo
B=Ryy — Ris

C=Rp3— Ry

and a unit normal " may be constructed by the following vector operations:
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The area A, of the triangle is readily calculated from
Ay =&$ —ANS B)S - O)
where
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With this triangularization established, the PO surface current is approximated by

N

k

Jg = 2 J®
k=1

where J_Ek) is the PO current evaluated at the center of the kth facet. In other words, the PO surface
current is assumed to be constant over a facet. Using this expression in Yq. (1) gives the following
approximate ion for the PO radiation integral:
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Notice that a discrete approximation is used for the current as well as the surface. 1 ‘or ad in
convergence, the distance Ry is chosen to be on the surface rather than on the triangular facet.




lJual-Reflector Calculation

For generality, we will consider the dual-reflector calculation; the single reflector calculation
can be done in the same manner, but the time associated with the calculation is considerably less and
may not require the capabilities of parallel computing.

Referring to Figure 2, the clual-reflector case consists of a feed, subreflector surface, and main
reflector surface. The field scattered from these surfaces is evaluated at a given field point and the
calculation can be thought of as three sequential operations: (1) compute the currents on the first
reflector using the standard PO approximation; (2) utilizing the currents on the first reflector as the
field generator, compute the currents on the second reflector; and (3) compute the required field
values by summing the fields from the currents on the second reflector.

Utilizing the method described in the previous section, each surface is subdivided into small
triangular regions, with a typical mesh projected into the x-y plane shown in Figure 3. The currents
on the first surface (typically called the subreflector) arc evaluated using Eq. (2). For the examples
considered in this paper, the incident will bein the form of a cosine to the power Q, athough any
desired incident field evaluation could be used. Thus the incident field is of the form
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where the feed is assumed to be pointing along the 7, coordinate and 6 is the polar angle. The
magnetic field incident on each triangle of the second reflector (typically called the main reflector) is
evaluated using Eq. (3). The currents on each triangle arc then obtained by using the physical optics
approximation of J=2nx /1. Observe that to obtain the current for each triangle of the second
reflector requires a sum over al the triangles of the first reflector. The field scat tered from the
second reflector is then evaluated by another application of 1i.(3) (or asimilar form of the equation
if the E-field is required).

Parallel Algorithm

Observe that the most time-consuming part of the calculation is the computation of the currents
on the second reflector due to the currents on the first, since for N x N triangles on the first reflector,
each of the M x M triangles on the second reflector required an N2 sum over the first. Since each
calculation requires the identical number of operations, the N2 triangles canbe evenly distributed
over the nodes, and the sum done in paralel for each of the M2 triangles on the second reflector.
However, since the computation of the currents on the first surface is trivia, little (other than
storage) is gained by distributing the N2 triangles of the first reflector over the nodes. Computation
of the currents on each of the M2 triangles is evenly distributed over the nodes ant] the computations
are done in paralel. IHence each node has a copy of the program for computing the integrand of
Eq. (3), and each node computes the H-field and current for its assigned triangles. After each of the
nodes computes its M2/NODES of the currents, the currents are then collected such that each node
has all the currents. To compute the ficld valucs, each node does M2/NODES of the sum of 1iq. (3)
utilizing the currents on the main (sccond) reflector. The final result is obtained by summing the
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Figure 2. Schematics of the coordinate systems.

fields obtained from each of the nodes. It is possible to improve the algorithm for storage (but only

a minor time savings) by not collecting all the currents on the main reflector, since each node only
needs its M2/NODES currents to do the field summation.

Examples and Conclusions

As an example, we consider the two parabola example shown in Figure 4 (Reference 2). This
isaportion of JPL. beamwaveguide system and is designed to image the input feed pattern to the first
parabola at the output focus of the sccond parabola. The geometry is as shown and for this
calculation a cos?(0) feed pattern with ¢ =238.25 is used as an input. A typical output is shown in
Figure 5 with a comparison to measured data included.




PARABOLIC REFLECTOR EXAMPLE
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Figure 3. Typical mesh projected in X-Y plane.

The typical time for asmall example isshown in “I’able 1. The only part of the program that
was parallelized was the portion which computes the second reflector currents from the first refiector
currents. For sufficiently large problems this portion of the code dominates. Howecver, it is possible
to parallelize the field evaluation and this will be done in the future. OPSErve that the efficiency of
calculating the currents using 8 nodes is 98.6%.

Table 1. Dual reflector example with 1(1372 triangles on each surface

# Nodes | ! 4 8
Time for first reflector currents 11 12 13
Time for second reflector currents 11,339 2849 1437
Field evaluation 191 192 194
Total (seconds) 11,721 3053 1644
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Figure 4. A two-mirror BWG system test setup.
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Figure S. Measured (dashed line) and computed (solid line) data for offset plane (X-band).
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