Situated Plan Attribution for Intelligent Tutloring

Randall W.11ill,]r.
CalTech /et 1 ‘repulsion lLaboratory
4800 Oak Grove Drive M /S 525 3960

Pasadena, CA 91109-8099
hill@gobi jpl.nasa.gov

W. 1.ewis Johnson
USC 7/ information Sciences institute
4676 Admiralty Way
MarinadelRey, CA 90?792-6695

johnson@isi.cdu

Abstract

Plan recognitjon and agent modeling techniques are potentially useful for
intelligent tutoring, but are difficult to cmploy in practice. 1lowever, plan
recognition techniques frequently make rigid assumptions about the student's
plans, and invest substantial cffortto infer unobservable properties of the
student. The pedagogical benefits of planrecognition analysis arce not always
obvious. We claim that these difficulties can be overcome if greater at tention s
paid to the situational context of the student's activity, and the pedagogical tasks
which plan recognition is intendedto support. ‘1°his paper describes anapproach
o plan recognition called situated plan attribution that takes these factors into
account. Situated plan attributioninterprets both the student’s actions and the
environment in which the student is sit uated. 1 tdevotesvarying amounts of
effort to the interpretation process, focusing the greatest cfforton interpreting
impasse points, i.c., points]~’here the thestudent encounters some difficulty
completing the task. Cognitive modeling studics have indicated that tutorial
interaction maximally cffective at impasse points, T ‘his approach has been
implemented and evaluated inthe context of the REACT tutor, a trainer for
o]x’raters of deep space communications stations.

1 ‘epic areas:compuler-aided educat ion, planrecognition, cognitive modeling

Acknowledgements

The rescarch described in this paper was carried out by the Jet I'repulsion
1 .aboratory, California Institute of Technology, under a contract with the
National Acronautics and Space Administration. 1Jr. Johnson was supporled in
part by the Advanced Rescarch I'rejects Agency and the Naval Research
1 .aboratory under contract number N 00014-92-K-2015 (via a subcontract from the
University of Michigan). Viewsand conclusions contained in ibis paper are the
authors’ andshould not be interpreted as representing the official opinion or
policy of the U.S. Governmentor any ager Icy thercof.

Situated Plan Attribution for Intelligent ‘1 utoring

Abstract

Plan recognition and agent modceling techniques are potentially useful for
intelligent tutoring, but are difficult to employ in practice. However, plan
recognition techniques frequently make rigid assumptions about the student's
plans, and invest substantial effort to infer unobservable propertics of the
student. The pedagogical benefits of plan recognition analysis are not always
obvious. We claim that these difficulties can be overcome if greater allention
is paid to the situational context of the student's aclivity, and the pedagogical
tasks which plan recognition is intended 10 support. This paper describes an
approach to plan recognition called situated plan altribution that takes these
factors into account. Situated plan attribution interprets both the student's
actions and the environment in which the student is situated. 1t devoles
varying amounts of cffort to the interpretation process, focusing the greatest
cffort on interpreling impasse points, i.c., points where the the student
encounters some difficulty completing the task. Cognitive modeling studies
have indicated that tutorial interaction maximally effective at impassc points.
This approach has been implemented and evaluated in the context of the
REACT tutor, a trainer for Operators of deep space communications stations,

Topicarcas: compuler-aided education, plan recognition, cognitive modeling

1. Introduction

Plan recognition andag entmodeling capabilities are valuable for
intelligent tutoring (Corbet 1 et al., 1990, Johnson,1986), aswell as other arcas
such as natural language processing (Charniak&Goldman 1991), expert
consultation (Calisiri1990), and tactical decision making (Azarcwiczcl al.,
1986). 1 lowever, such capabilities arc difficult toimplementand employ
cffectively, for the following reasons. Planrecognition techniques canbe
rigid-- they assume the agent is following a known plan step by step, and have
difficulty interpreting dcviations from the plan. Themodeling process can be

underconstrained, postulating mental activities that are difficult to infer from
the agent's observable actions. An example of this style of modeling can be
seen in (Ward, 1991), where the tutor attempts to track the student by
generaling production paths that could have led to an observed action.
Finally, they tend 1o be unfocussed---they do not target their analysis on thosc
situations where tutorial intervention is warranted. For instance, intelligent
tutors that use model tracing (Anderson et al,, 1990) to interpret student
actions tend to intervene whenever the student wanders off of a correct
solution path; this intervention policy is potentially disruptive and doces not
appear to be based on an analysis of whether it is appropriate to intervene.,
This paper describes an approach to plan recognition called situated plan
attribution that takes these factors into account. Situated plan atiribution
analyzes both the student's aclions and the environmental situation.
Atlention to the situation is important becausce it allows the plan recognizer to
recognize when the student must deviate from the usual plan, as well as
alternative ways of achieving the goals of the plan. This flexibility avoids the
rigidity problems of other techniques such as Kautz and Allen's deduclive
approach (Kautz&Allen 1986), which assumes that all possible ways of
performing an action are known, and every action is a step in a known plan.

2. Motivation {for Approach

The objective of situated planatiribution is to inform and guide the tutoring
process. Webelieve that plan recognition systems canand should be
oplimized to support their intended use. Accord ingly, our technique applics
greatest analysis effort o interpreting situations where the student might
benefit from interactions with the t utoring system. 1 .¢ss effortis devoted to
plan recognition when tutorialinteraction is not justified on pedagogical
grounds. Our stance is consistent with that of (Self 1 990), who argues that to
make student modeling tractable one m ust focus on reali sti ¢, useful
objectives.

These tutorial interaction points arc known as impasse points. An impasse
is defined in this work to be an obstacle {o problem solving thatresults from
cither a lack of knowledge or from incorrect knowledge (1 1ill, “1993; Brown
&Vanl.chn, 1980; Van] .chn, 1982,1983). Cognitive modeling studics suggest
thatsuch impasse points arc natural learning opportunities (1 1ill, 1993;
Vanl.chn, 1988; 1 lill&Johnson, 1993a,b). Whein the studentis atan impasse,
he or she naturally secks information that can beused to overcome the
impasse andcontinue the task. Information offered by the tulor at such
points is readily accepted and assimilated, A tutor that is sensitive to such

impasscs does not run the risk of annoying the student with interruptions--
the student's problem solving has already been interrupted by the impasse.
The tutoring system need not intervene in a heavy-handed fashion; it can
scrve as an information resource that the student can turn (o for assistance as
needed. The student therefore has a greater sense of control over how the
task is performed.

3. Implementation of the Approach

Situated plan attribution has been implemented and evaluated in the
context of the REACT tutor, a trainer for Operators of deep space
communications centers. REACT monitors trainees while they operate a set
of complex, interactive devices. There are three entities in REACT's tutoring
domain: the tufor, the student, and a simulation of the environment (i.c., the
devices). The student is assumed (o have some understanding of operational
procedures. Towever, the devices may be in unexpected states, or behave in
unexpected ways; the student must learn (o recognize such situations and
deviate from the standard procedures as necessary. REACT recognizes when
the student has reached an impasse, because the student's action has failed or
cannotl achicve its intended purpose in the devices' current state. 1 then
coaches the student through the impasse.

REACT's plan recognition capability is not rigid because it has knowledge
of device stlates and actions that affect them, as well as knowledge of plans. I
avoids excessive underdetermined student modeling because it focuses on
observable student actions and their effects. REACT generally does not
intervene with the student unless a student has already received an error
message from the device. As long as the student's overall plan is appropriale,
interaction centers on the device errors and how to correct them. When
necessary it employs an expert cognitive model to determine what action an
expert would take ina given situation. Otherwise a weaker, recognitional
form of analysis is employed--the system simply checks whether each
student's action is a known step in a known plan, and {racks the student's
progress through the plan. Actions that the system doces not recognize are
ignored, unless they have an undesirable effect on the state of one or more
devices. The analysis becomes increasingly recognitional over time, because
whenever the system employs the expert cognitive model to analyze the
situation, it remembers the results of the analysis for use in similar situations.

We cstimate that there are many real-world skills where feedback from the
environment can guide the problem solving problem solving process as in
REACT. Intelligent {utoring systems tend to overlook the role of the

environment because they are frequently applied Lo abstract domains such as
geomelry or subtraction. Hven in these domains there may be useful
environmental cues {o exploit. For example, intelligent tutors for
programming tend not to take advantage of feedback from actually running
the student's program, also recent work such as GIIL is making such feedback
more readily available to the student (Reiser et al., 1989)

4. }",xamplo Problem

To illustrate how REACT works we will now describe an example from
our {ask domain. Students are assigned missions that involve activities such
as configuring and calibrating a sct of cominunications devices, establishing a
link to a spacecraft, recording datafromthe spacecraft, and transferring the
recorded data to a control center. These tasks involve sending commands
asynchronously viaa computer terminalover a local areanetwork to the
devices. Standard command sequences for cachtype of mission are defined
by procedure manuals. The devices i nitially respond to each command with
an indication of whether the command is accepted orrejected; if accepted, the
devices require time o change state.

Configure!-)SP " Gohorence Tosl 7

___Command - Description Command__ Descriptic n
NLIOADx 1 “—-7"" |oad-predicts-file e NPCG xT set NPCG mode
NRMED x7 sclect-recorder NRUN x7 run NCB program
SAl x1 S-band attenuation NDIt x7 enable DTE
XA1 x1 X-band attenuation NF F*1 x7 enable NFF 1
NFOP x1x2 set temperature
OF S-I x1 setoff settime

ligure 11 'xample 1 rocedures

Figure 1 shows two procedures. The first procedure, Configure-DSP, is
uscd to configure the DS) subsystem, which is used for spectrum processing,
The steps mostly involve loading or setling parameters and sclecling devices.
The second procedure, Coherence-Test, is used 1o test the continuity and
coherence of the communications link; it is supposed to be executed after the
Configure-DSP procedure has been completed.

We will walk through the example shown in Figure 2 o illustrate how
REACT overcomes the impediments 1o plan recognition. lere a student
begins with Configure-DSP's first command for loading the predicts file,
NIL.OAD JK. Linc 1 shows the N1LOAD command, and line 2 shows the
device's response, COMPLETED, indicating that the command was accepted.

lverything is proceeding as predicted by the plan: the correct command was
issucd by the student and it was accepled by the device.

-/
18
19
20

21
2?
23
24

Things get a bit more complicated on lines 3 through 7.

‘Commands / Responses

S NIOADK
>GOMPLEFTE).

>NRMED 1 o

>REJECTEE). 1 DO DISABLED

>LDOE
>COMPLETED. LDO:ONI N
> NRMED LDO

> COMPLELE].
> SA1 55

> COMPLELE],
>XA1 13
>COMPLE1E].
> NTOP 20,030,0
>COMPLE1ED.
> NPCG MAN
>COMPLETE],

>QF S12,77
>COMPLELE]).
> NRUNCOIL |)
>COMPLE“1L]).

>NDI1EE
>COMPLE'1E],
>NFIFTE
>COMPLE “E]).

RE ACT's | xplanation

‘1 he NKMED command failed because one, of
its preconditicns was unsatisfied: LDO should
be in the ONLINE mode instead of the
OF 1 INEmode. 10 resolve the impasse,
issue the command:LDOE

then

Issue the command: NFAME) 1)0

You started the Coherence-lest procedure be-
fore you finished the Configure-DSP procedure.
lssue the Command: OF S1 <>

You fziled to achieve one of the goals of the
Configure-DSP procedure: SAL = 12,

lssue the command: NIDLERE C

hen

lssue the command: SA1 12

Figure 2: An example of tutoring with REAC]

On line 3 the

student issues the next command in the Configure-DSP plan, NRMED. This
command follows the Configure-DSP plan exaclly, but the situation aclually
requires a different action to be taken, 1.0 1, (i.c., enable recorder 1.120),
which is why the command is rejected on line 4. REACT thus must recognize
when deviations from the plan are warranted; it docs this by first noting the
rejection and reasoning about why the action was not appropriate. In this
casc the command was rejected due to an aclion constraint violation (i.c., an

unsatisfied precondition) by the NRMED command. REACT explains its
reasoning about the violation as well as deriving a way to resolve the
difficulty. The difficulty is viewed as an impassce because it prevents the
student from continuing with the procedure, and it suggesis a gap in the
student's knowledge--if he had a good grasp of the procedure, he would have
known 1o check the state of recorder 1.D0 before selecting it. At line 7 the
1ssucs the NRMED command a sccond time; the plan calls for it {o be issued
just once. The second occurrence of the command is delermined to be
appropriate given that the first attempt at this action failed.

The example next illustrates difficulties that arise when the student
follows a plan but fails to achieve its goals. The commands and responses on
lines 9 through 14 follow the Configure-DSP plan exactly and all of the
commands are accepled by the device. Tlowever, the parameter value of the
SAT (Set S-Band atlenuation value) command, 55, will not achieve one of the
procedure's goals, that the value should be 12 by the time of the procedure's
completion. This goal is not explicitly stated in the procedure, rather, it is
derivable from the mission support data provided to the student. 1f the
student doces not correct this setting, it will affect the quality of the
communications link with the spacecraft and of the data being recorded.
Vailure 1o achieve a goal is another type of impasse that can occur when a
student is performing a task, indicating another type of knowledge gap in the
student's skill set. REACT gives the student the opportunity to correct the
error alone, but will intervene if not, before it is too late to correct it. When it
detects the the NRUN COLD @i.e., run NCB program) command on line 19,
that belongs 1o the Coherence-Test plan, it initiates the interaction concerning
the unsatisfied goal. In this case REACT also employs its expert cognitive
model to analyze the cause of the impasse and determine a solution.

The final point made by the example centers on the actions listed on lines
15 through 18. On line 15 the student sends the NPCG MAN (e, set the
NPCG device to manual mode) command, which is the first command in the
Coherence-Test procedure, prior o finishing the Configure-DSP procedure,
which has OVST (set the offset time) as its last command. This is a
straightforward casc of misordered plans, and REACT immediately alerts the
student that a step was missed prior to starling the new procedure (see line
16). REACT recognizes this type of impasse as a plan dependency violation.

5. Situated Plan Attribution

Three types of impasses were introduced in the above example: (a) action
constraint impasse, where the student takes an action that is in the plan but

6

which the situation does not warrant, (b) goal failure impasse, where the
student completes a plan without having achicved its goals, and (¢) plan
dependency impasse, where the student execules a plan before successfully
completing once of its required predecessors. We will now give the details of
how REACT recognizes and resolves cach of these types of impasses.

5.1 Soar cognitive architecture

REACT is implemented in Soar, a problem solving architecture that
implements a theory of human cognition (Iaird ct al., 1987; Newell, 1990).
Soar is an integrated problem solving and learning architecture. Tasks in Soar
arc represenied and performed in problem spaces. A Soar problem space
consists of a collection of operators and states. Operators are proposed,
sclecled, and applied to the current state; the resulting state changes may
causc other operators in the problem space to be proposed, sclected, and
applied. Impasses occur in Soar when the problem solver stops making
progress. To resolve an impasse, the Soar problem solver creates a subgoal
and sclects a different problem space where other operators are available for
solving the problem. When the subgoal problem solving is successful, the
resulls are saved in new productions created by Soar's chunking mechanism,
which also saves the conditions that led to the impasse in the first place. The
next time the conditions occur the learned chunk will be applied instead of
having to scarch for an opcrator in the goal hierarchy.

5.2 Knowledge representation in REACT

REACT models several other aspects of plans besides the component
actions shown in Figure 1, as will be briefly deseribed below. Yor cach type of
mission the temporal precedence relationships among the plans is modceled
with a directed graph structure called a temporal dependency network (119N)
(Fayyad&Cooper, 1992). A plan has a name and three attributes: slate,
execution status and goal status. The stale of a plan can be either ACTIVE or
INACTIVE; a plan is considered to be active once all of its predecessors in the
TDN have been successfully completed. It is inaclive prior to being active,
and it becomes inactive again once it has been successfully completed. A
plan's excecution status (INCOMPLETE or COMPLETL) is determined by
whether all of its commands have been observed. Each plan's goal status is
marked satisfied if all its goals have been satisfied, otherwise it is unsatisfied.

Plans have two entities associated with theme operators (commands) and
goals. The operators for the plans named Configure-DSP and Coherence-Test
arc shown in Figurc 1. Fach operator has a sel of preconditions. A
precondition is tuple representing a device state that must be {rue before it
can be considered satisfied. Similarly, a plan goal is also a tuple that

represents a device state. As will be seen in the following sections, an aclive
plan's goals arc individually monilored for satisfaction at all times.

5.3 Problem space description of REACT

The problem space organization of REACT is depicled in Figure 3.
REACT is an integrated problem solving system, but for the purposes of (his
discussion the operators and problem spaces can be functionally divided into
lwo categories: impasse recognition and impasse explication.

The operators in the top-level problem space that are responsible for
recognizing impasses are shown with bullets and non-italicized names in
Figure 3. The first of these is the perceive-object operator. This operator is
usced (o add externai objects, in this case the devices and their attributes, to
REACT's internal modecl of the world. Once a device has been added, any
changes to the device's state are automatically updated in REACT's internal
model.

.perceive-object

.recognize-d esired-results

. tecognize-undes ired-results / resolve-goal-failure-impasse

» recognize-goal-completion resolve,-action- constraint-) nymsse

« recognize-plan-completior, [esolve-plan-dependency-impasse

» analyze-action-responsg
evaluate-plan

lop-level problem space
/

dependenc

problen) space
¥

plan
fe.q. Confiqure-DSP)
analyze-action- evaluate-plan problem space

fesponse problem space plan-operator (e.q. select-recorder)

problem space

problem space problen space problem space

Figure 3: REACTs 1°roblem Space 1 licrarchy

The next four operators, recognize-desired-results, recognize-undesired-
results, recognize-goal-completion, and recognize-plan-completion are used
to continually monitor the status of active plans and their goals. (Note: more
than one plan may be aclive at a time.) The recognize-desired-results and

recognize-undesired-results operators are used for keeping track of the
individual goals of an aclive plan. These operators are selected and applied
as soon as a relevant device state changes. The recognize-goal-completion
operator is sclected and applied when the conjunction of all of an active plan's
goals is salisfied. 1ikewise, the recoghize-plan-completion operator changes
a plan’s status to COMPLETE when all of the plan's operators have been
observed. The operator called analyze-aclion-responsce is sclected and
applied cach time the student takes an action. The analyze-action-response
operator subgoals {0 a problem space with the same name, where there is a
sel of operators that match the student's command to a plan. When matching
the command to a plan, preference is given o aclive plans over inaclive ones,
since we expect the student to be performing an active plan. If the command
was accepled by the device, then the plan's corresponding operator is marked
and the subgoal is {terminated.

If the student’s command was rejected, then the plan's operator is marked,
but a flag is also raised to indicate that an action-constraint impasse has
occurred. Likewise, if a command docs not match with any aclive plan, but
docs match an inactive plan, then a flag is raised (o indicate that the student is
at a plan dependency impasse. In either case, once the matching has been
completed, the analyze-action-response subgoal terminates and problem
solving continues in the top-level problem space.

Before discussing how REACT handles an impasse once it has been
discovered, we will cover the last major operator used for impassc
recognition, evaluate-plan. This operator is selected and applied after an
active plan's status has been changed to COMPLYETE, i, all of the plan's
opcralors have been maiched with student aclions. A subgoal is formed and
the evaluate-plan problem space is selected where there are operators that
check the plan's goal status. If the goal status is SATISFIED, then the plan is
made inactive, and operators are applied to aclivate other eligible successors
to the plan being evaluated. If the plan's goal status is UNSATISEIED then an
operator raises the flag for a goal failure impasse. The subgoal then
terminates and problem solving continues in the top-level problem space.

Now we turn to the other major problem solving activity that can be
initiated from the top-level problem space, namely, impasse explication.
There is one operator for each type of impasse, shown in italics in Figure 3 In
the case of a plan dependency impasse the explication process is simple: a
subgoal is formed by the resolve-plan-dependency-impasse operator, where
an explanation is generated for the student telling about the unfinished plan,
including which commands have yet to be sent.

Yor the other two impasse categorics, action-constraint and goal failure,
the expert cognitive model is invoked at the point in the problem solving

9

where the impasse was detected. (The problem spaces implementing the
experl cognitive modcel are shown in italics.) The expert cognitive model puts
itself in the student's situation and simulates cither taking an individual
action or taking whatever actions are necessary to achieve a plan's goals,
depending on the (ype of impasse. The problem solving in cither case
mvolves selecting the plan (Plan Problem Space) where the impasse occurred,
sclecting an operator from that plan (Plan-Operator Problem Space), and then
verifying the operator's preconditions (Verify- Preconditions Problem Space)
with respect to the device state. If one or more preconditions is not satisfied
the cognitive model subgoals into the Repair-UNSAT-precondition problem
space where it determines what actions 1o take {o satisfy them. In the process,
explanation is generated.

5.4 Example revisited

To illustrate how REACT works, we will revisit the example used in
scection 4, focusing on the aclion constraint impasse that occurred on lines 3
and 4, where the student issued the NRMED 1.D0 command and it was
subsc'qucn{]y rejected. The command-response pair on lines 3 and 4 is
detected by the analyze-action-response operator, which subgoals into the
analyzc-action-response problem space where the NRMED command is
matched to the aclive plan called Configure-1DSP (Figure 1). Since the
command was rejecled by the simulator, the operator sets a flag indicating an
aclion constraint impasse and the subgoal terminates. Then the resolve-
action-constraint-impassce operator is sclected and a subgoal into the
Configure-DSP” Plan problem space is formed. The operator corresponding {o
the NRMED command called select-recording-device is selected and another
subgoal is made into the select- recording-device problem space (shown as
P’lan Operator Problem %paco in Figure 3.) A subgoal into the Verify-
Preconditions problem space is madce for cach of the select-recording-device
operator's preconditions. As it turns out, the precondition that says that the
recording device being sclected must be in the ONLINE mode is unsatisfied.
This is where the first part of the explanation on line 4 in Yigure 2 is
generated. Next, REACT subgoals into the Ropair -UNSAT-Precondition
problem space, where it is determined that issuing 1100 E (enable Jc‘cmdmg
device 1.130) command will satisfy the precondition. This information is also
putl into the explanation on line 4 of the example. Finally, once the
precondition is satisfied, the selecl-recording- device problem space simulates
sending the NRMED 1.D0 command (select the recording device named 1.10),
and this is also added to the explanalion and this subgoal terminates. Since
REACT has determ nedhow toresolve the impasse, all of the subgoals in the

hicrarchy terminate and the impasse recognition operators resume their work
with the next aclion-response pair.

5.5 Role of learning

RHACT improves its performance as it gains experience recognizing
impasses in different situations. Recall that Sear builds new productions each
time that REACT subgoals into once of its problem spaces for impasse
recognition or impasse explication. The new productions summarize the
conditions that led to the subgoal in the first place as well as the end results of
the scarch. REACT thercefore avoids subgoaling in situalions where it has
previously recognized and explicated an impasse. Instead when a command-
responsc pair is observed REACT immediately applies a recognition chunk
that determines whether there is an impasse or not instead of subgoaling into
the analyze-action-response problem space. Once this chunk fires, there are
explication chunks that gencrate an explanation for the interaction with the
student without activating the scarch through the expert cognitive model
problem spaces. As chunks are built the lines between impasse recoghition
and impasse explication begin to blur since much of the problem solving is
done in the top-level problem space and not in the different branches of the
problem space hicrarchy. This is somewhat different from the traditional
mitelligent tutoring model that makes a distinet functional separation among
the student, expert and tutoring models (Warren&Goodman, 1993).

6. Evaluation

A pilot study was conducted to evaluate REACT, both interms of ils
ability torecognize and explicate impasses and its ability (o abet students'
learning, Thestudy had sevenstudents who were divided into two groups.
Group 1's students were tutored by REACT while they performed assigned
tasks ON a simulator, and Group 11's students performed {he identical tasks
withoul REACT. Pre-tests indicated thatthetwo groups had roughly the
same skill level at the beginning of thestudy. ‘1 he tasks were configured so
that certain types of action constraint and goal failure impasses would occur
if thestudentwas not egx’rimed, which was the case with both groups. ‘1 he
results of the evaluation indicated a significant difference inthe amount of
time ittook to acquire skillatimpasse points. While both groups acquired
thesame amount of skill in cam where there was anaction constraint
violation, the studentsin Group I(with REACT) resolved the impasses and
acquired the new knowledge approximately ten times faster than the students
in Group 1I. 1 ikewise, the students in Group 1 were less prone to making

having certain goal failures than the students in Group 11. 1t was observed
that students who did not notice a goal failure the first time they performed a
task were prone to never realizing that there was one.

During the study REACT interpreted 604 different command-response
pairs (actions) performed by the students. 1t recognized and explicated 36
action constraint impasses, 5 plan dependency impasses, and 17 goal failure
impasses. In analyzing the event logs, REACT did not make any
misinterpretations.

A queslionnaire was also administered 1o the test subjects, who gencerally
found REACT to be helpful and understandable, but who also found some of
the explanations 1o be cryptic. We have decided it would have been helpful
to explain the impasse categories prior to the training as well as the
representation that was used for device slate.

Finally, though REACT was shown to be robust in the task domain we
have described in this paper, we suspect that it will be necessary to make
some improvements to the situated plan attribution problem spaces Lo cope
with larger numbers of plans and actions. In these cases we anticipate the
need to deal with more ambiguity that was present in our current
implementation. Ambiguily primarily will have an impact on the
mterpretation of plan dependency violation impasses---REACT might have to
delay offering assistance until it is clear which plan the student is attempling
next.

7. Conclusions

We have introduced a plan recognition technique called situated plan
attribution that we claim avoids some of the problems of other approaches,
especially as applied to intelligent tutoring. Specifically, we have shown how
our method is flexible enoughto recognize when a ‘situation warrants an
action that is not specified by a plan. | ikewisc, it recognizes when anaction
specified by a plan is not situationally appropriate.

Situated planatiribution also addresses the issues of underconstrained
and unfocused modeling in that it concentrates on recogniz ing students'
impasse points rather than trying to generate or understand the mental states
that ledto a particular aclion. impasse points arc natural places to tutor, and
the amountof processing required torecognize anti explicate the impasses we
have defined is reasonable,

12

8. References

(Anderson ct al,, 1990) John R. Anderson, C. ranklin Boyle, Albert T.
Corbetl and Matlthew W. T.ewis. Cognitive modeling and intelligent tutoring,
Artificial Intelligence, 42, 1990: 7-49.

(Azarewicz el al,, 1986)]. Azarcwicsz and Iala, G. and Fink, R. and
Ieighecker, C.., Plan Recognition for Airborne Tactical Decision Making,
Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 805-811,
1986.

(Brown&Vanl.chn, 1982) John Scely Brown & Kurt Vanl.chn. Repair
theory: A gencrative theory of bugs in procedural skills. Cognitive Science, 4,
1982:379-426.

(Calistri, 1990) Randall J. Calistri. Classifying and detecting plan-based
misconceptions for robust plan recognition. Ph.D. diss., Technical Report No.
(5-90-11, Department of Computer Science, Brown University, 1990.

(Corbet et al., 1990) Albert T. Corbetl, John R. Anderson, and liric G.
Patlerson. Student Modeling and Tutoring Flexibility in the Lisp Intelligent
Tutoring System. Infelligent Tutoring Systems: At the Crossroads of Artificial
Intelligence and Vducation. Ablex, 1990.

(Charniak&Goldman, 1991) Fugene Charniak and Robert Goldman., A
Probabilistic Model of Plan Recognition. Proceedings of the Ninth National
Conference on Artificial Intelligence. 1991.

(Fayyad&Cooper, 1992) Kristina Fayyad and Lynnc Cooper.
Representing operations procedures using temporal dependency networks.
Proceedings of the Second International Symposium on Ground Data Systems for
Space Mission Operations, SPACEOPS-92, Pasadena, CA, November 16-20,
1992,

(11111, 1993) Randall W. T1ill, Jr.. "Impassc-driven tutoring for reactive skill
acquisition.” Ph.D. diss. University of Southern California, Los Angeles,
California, 1993.

(1lill&Johnson, 1993a) Randall W. Hill, Jr. and W. l.cwis Johnson.
Designing an intelligent tutoring system based on a reactive model of skill
acquisition. Proceedings of the World Conference on Artificial Intelligence in
Pducation (Al-1D 93), idinburgh, Scotland, 1993.

(11ill&Johnson, 1993b) Randall W. 11il], Jr. and W. lLewis Johnson.
Impassc-driven tutoring {or reactive skill acquisition. Proceedings of the 1993
Conference on Intelligent Computer-Aided Training and Virtual Lnvironment
Technology (ICAT-VI1-93), NASA/Johnson Space Center, Houston, Texas,
May 5-7,1993.

13

(Johnson, 1986) W. lewis Johnson. Intention-based diagnosis of novice
programiming errors. 1.os Altos, CA: Morgan Kaufmann Publishers, Inc., 1986.

(Kautz&Allen, 1986) lenry A. Kaulz and James 1. Allen. Generalized
plan recognition. Proceedings of the National Conference on Artificial Intelligence,
Philadelphia, PA, 1986.

(l.aird ct al,, 1987) John L. lLaird, Allen Newell and Paul S Rosenbloom.
Soar: An architeclure for general intelligence. Artificial Intelligence, 33, 1987:1-
64.

(Newell, 1990) Allen Newell. Unified Theories of Cognition. llarvard
University Press, 1990.

(Reiser et al., 1989) B.J. Reiser, M Ranner, M.C. T.ovetl, and D.Y. Kimberg,.
Facilitaling Students' Reasoning with Causal Ixplanations and Visual
Representations. Artificial Intelligence and Fducation: Proceedings ofthe 4th
International Conference on Al and Education., pp. 228-235. Amsierdam: 105,
1989.

(Sclf, 1990) John A. Sclf, "Bypassing the Intractable Problem of Student
Modeling", in Frasson, C. and Gauthier, G., eds., Intelligent Tutoring Systeins:
At the Crossroads of Artificial Intelligence and Pducation, Ablex, Norwood, NJ,
pp- 107-123, 1990

(Vanl.chn, 1982) Kurt Vanl.chn. Bugs are not enough: mpirical studies of
bugs, impasses and repairs in procedural skills. The Journal of Mathematical
Behavior, 3, 1982:3-71.

(Vanl.chn, 1983) Kurt Vanl.chn. TIelicity conditions for human skill
acquisition: Validating an Al-bascd theory. Tech. Report C1S-21. Palo Alto, CA:
Xerox Palo Alto Rescarch Center.

(Vanl.chn, 1988) Kurl Vanl.chn. Toward a theory of impassc-driven
learning. lLearning lIssues for Intelligent Tutoring Systems. lidited by leinz
Mandl and Alan lLesgold. New York: Springer-Verlag, 1988:19-41.

(Ward, 1991) Blake Ward. IiT-Soar: Toward an 1TS for theory-based
representations. PhuD. diss., CMU-CS-91-146, School of Computer Science,
Carncgic Mellon Universily, Pitisburgh, PA.

(Warren&Goodman, 1993) Kimberly C. Warren and Bradley A.
Goodman. lingincering intelligent tutoring systems. 1993 Conference on
Intelligent Computer-Aided Training and Virtual Lnvironment Technology, (I1CAT-
VET-93), NASA Johnson Space Center, 1louston, Texas, May 5-7, 1993.

14

