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Abstract

Non-geometric hazards (i.e., those which cannot
be ck]araclerizcd  solcy  b y  their s h a p e ,  L)ut
i ns tead  a rc  re la ted  to  nlechanical  propcr!ies
s u c h  as s t reng th  and f r i c t i on )  may  pose  a
significant risk to planetary rovers. “1 his paper
describes a means for an articulated vchiclc  to
detect sinkage and slippage in such material so
as to prevent entrapment and to correct for
dead-reckoning errors. Simulation results and
p r e l i m i n a r y  i n d i c a t i o n s  o f  t e s t  d a t a  are
described.

~ntrodL~ction

For an exploring vehicle to move safely over the
sur face  o f  ano ther  p lane t ,  it is potential ly
impor[ant  to know if the vehicle is sinking into
very soft surface materi:il  or is experiencing
high levels of wheel slip. F-or example, at tire
Viking 1 landing site, about 14% of the sLlrface
is drift material, and one of the landing legs
s a n k  17 c m  i n t o  t h a t  material.1 Previo Lls
St Lldi~S Of nOn-g OOnl Ctri C h:l Zard dCte  Ctl On f O r
planetary rovers, which assumed very large
(-1000 Kg) rovers, have focussed on C+roLjncl
Penetrating Radar t o detect subsurface
hazard  s.2’3 E{owever, mass and power
COnStEiintS  fOr micro rover missions lead 11s to
desire means to detect these hazards withoLjt
requiring additional mass, power, or complexity
beyond the basic vehicle configuration.

I I
For the purposes of this discussion, we consider
the mission model of NASA’s Mars Environmental
Survey (MESUR)  Pathfinder project, scheciuled
for launch to Mars in November, 1996. In this
mission, a microrover with a mass of under 10
Kg will traverse over the terrain within a few
tens or hundreds of meters from it’s lander  to
goal points selected by ground-based analysis of
images taken by lander stereo cameras. T hese
goal points are selected for their scientific
interest, and it is important ttlat tllcy be
approached quite accurately (for example to take

a spectrum of a particL!lar  rock). 1 hus safety
and improve  nlcr]t in t t-r e acc LJ racy  o f
dead-rcckonirrg navigation are imporlant  reasons
to dc!vc! lop a reliab[c means for cstirnating  the
sirlkage and slippage of tlIc rover wlIecls. Means
for detect ion arncj avoidin:l  qcornctric I)azarcls  are
dcscrit)cd  clsc\vllc!rc,’l
-i tic! f’attlfirlder rover is a six-wheeled
“rock er-bogic” arlic  Lllatcd vehicle. It will be
funct ional ly cqL~ivalcnt  and tthc s:inlc  si7e as our
research vcl]iclc  “F{ocky 3,2”, shown in Eigurc 1.

I&.. -“=%s$.

F igLlrc 1. Floc;ky  3,2 vehicle
with laser stripe scnsc)rs

R o c k y  3.2 (one of a long line of F{ockys)  has
sensors for whc!c!l speed (all wllcels  are driven)
and for determining the articulation angles of
the chassis. (-] he ;]r[icLllatioris are pass ive  S 0

that each wllec!l follows the terrain contours,
indepc:nc~crltly.  ) II also l~as a Iook-ahead rangingl
sensor based on detecting, in a CCFl image, the
position of Iascr stripes projectec~  ahead of the
vetliclc (Fig Llrc 1 is reproduced from a color
original with a b l u e  f i l t e r  s o  ttle red laser
s t r i p e s  stlow  a~ d a r k  linc~). [\ Qca Llse ttlc
cornputatior]  o n - b o a r d  ttlc rover is very l i m i t e d
(arl 80[]5 CF’U, atlou[ ?0 Iir[lcs Ic:, s powerful ttlan
a  ty[)ic:il  pcrsorlal  corrl; )ulcr’), it i s  inlportant



‘that only a small amount of sensor data be taken
and processed. Thus it is important to
formulate simple algorithms for estimation of
slippage and sinkage, a n d  t o  do pedormance
evaluation based on the concept that orlly the
Whcc!l, chassis, a n d  a  m i n i m u m  number  of
discrete measurements from the look-ahead
sensor can be used as input to the system. [f a
simple algorithm gives good performance, in
terms of improvement of dead reckoning vs
basic odomctry  and in detection of hazardous
sinkage conditions, then the increased
computational load will be jLjstified.

3 tle_tinkagc and Slippage__Moclcl

We consider a planar model as shown irl Figure 2.
Specifically, th”ere  arc three wheels connected
with passive but instrumented linkages so that
they remain in contact with the soil as tt~cy roll.
E\y processing the pitch and articulation sensor
V~]LJCS  W e can compute the di f ference in
elevation between the rear wheel and the center
or f ront wheels (cal l  these z( l )  and z(2),
respectively). We also have a look-ahead
ranging sensor which examines a nLjmber of
discrete points on the ground ahead of the
vehicle. Again, by processing the sensor data,
Wc can compute the elevat ion di f ference
between the rear-wheel nominal contact point
and the elevation of each sensed point on the
ground ahcmcl of the vehicle (call these 7(3) . . .
z(N)). Needless tO Say, all these measure mcrrls
have noise which mLlst be accounteci  for in the
analysis.

As.$umplions

We assume that undisturbed terrain in this
planar model has an elevation function y(x),
where y is the elevation at a point x along the
horizontal axis, When the vehicle nloves ahead,
the front wheel sinks in the soil by an amoLlnt
s(x), so that it rolls along in contact with the
function y(x) -s(x). We assume that the trailing
wheels do not further compress the soil (since
the wheel loading of this vehicle is roughly
uniform). J“hus they also track y(x) -s(x), This is
a key assLjmption which, if not approximately
correct, will lead to a general failure of the
entire approach. If the wheels ail turn at the
same rate (which is reasonable since they are
geared so low that in normal terrain they run
effectively at the no-load speed), then when the
wheel circumference has nloved a distance w the
vchiclc  will aclvancc some d is tance  x  in  ttle

horizontal direction, usually less than w, clue to
wheel slippage. I’his  slippage will generally be
a function of the type and slope of the soil.
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Figure 2. Planar model and symbol definitiorls

Qbjectivc

l-he objective of this analysis is to estimate x
and s(x) given the “odometer”  reading w, the
values of  z( l ) . . .  z(N),  a n d  t h e  a s s o c i a t e d
n“lcasurcnlent  noise v(l)... v(N), Intuitively this
should be possible, since if y(x) and s(x) were
known exactly up to the forward-most sensor (a
ranging sensor for y and the front wheel for s),
then for a given Aw, there would usually be a
u n i q u e  A x  Whictl would a l l o w  all the ser”rsor
readings to match their predicted values. In
other words one would “slide” the rear and
center wheels along the curve y(x) -s(x) until the
observed elevation difference z(1) is matched
be tween  x+-Ax (the new position of the rear
wheel) and x+-Ax+d(l)  (the new position of the
center  wheel), which would fix Ax, J“hen one
would use the mcasLjrecl  elevation of tkle front
wheel to compute y-s at that point (thereby
extending our knowledge of s(x) forward by Ax.
Similarly, we would use the measured elevation
at the forward most range sensor to extend our
knowledge of y(x) by Ax. T his process would
repeat so as to build an arbitrary sequence of
Ax, s(x+d(2)), and y(x+d(N)) values. We Wollld,  of
course, :lSSUITIC  a yo(xo) value as the star l ing

elevation and posit ion o f  the  rear  whee l .
(Knowleclgc of the initial y(x) and s(x) functions
between x and x + d(N) is trivial since the
vet]iclc  will disembark from ttle lander along a
ramp of known geometry and with negligible slip
and sinkage.  )



C)nc potential problem with this approach is that
values of z(l),..  z(N) will not be taken densely
along the vehicle trajectory. Actually, the
processor on the vct~iclc is sLlfficicntly  slow arid
bLlrcicnecl with other activities ttlat ttlc
navigation and mobility scrlsors are Only
monitored r o u g h l y  e v e r y  wheel  radius of
forward traverse. This is often enough to ensure
that rocks, craters and other geometric hcizarrls
can be detected and avoided (an issue not
addressed in this paper).

lhere are several issues which need to be
considered wi th  th is model. F“irst, if
Z(k)=.  col(z(N) ,..., z(1)) at cycle k is measured or]
te r ra in  wtiicll is very f lat  (compared to the
nleasLjrcn?ent  uncertainties V(k)) then wc would
stil l l ike to have a reasonab le  es t imate  o f
f o r w a r d  t r a v e l .1 his suggests that wc should
have a prior model of the distribution of the slip
x(w), and that we should form a Maximum A
Postcriori  (MAP) estimate of the slip.5

Following our heuristic argument above, if we
w e r e  to “slide” t h e  v e h i c l e  a l o n g  Llrltil  tllc
observed elevation difference z(i) is nlatched,
this corresponds to generating a discrete set of
values y(i), i= O,... Ml and s(i), i= 1,...M? which can
be thought of as oLjr best estirriatc “histogranw”
(i. e., discretizecl piccewise cons tan t
representations) of tile y(x) and s(x) fL!nctions.
1 he horizontal density of these cstirl”latc$ shollld
be sufficiently great to allow accLjratc  mode ls
of the terrain for purposes of sirn L!lation, but
not so great as to unduly burden the processor.
Since the wheels mechanically average the
terrain over a length equal to the tire contact
patch (about a third of a wheel radius) we would
tend to cliscretize  the model at about this level.
l“hus we might have M2=30 or so and MI=(3O or so
(the actual Rocky 3.2 vehicle has 13 cm dia.
wheels and an overall length of 60 cm, with the
look-ahead sensor reaching abOLlt one vehicle
length).

l -bus we can now out l ine a procedure for
estimating the sinkage and slippage of tthc
micro rover:

1) Measure the elevation differences z(l)... z(N).

2) Use previously-estimated (described below)
histograms y(i), i= O,...,Ml  and s(i), i= O,..., M2, as
well as a Gaussian prior distributiorl  for AX with

m e a n  mx and variance aX2 to con-l pLjtc the

(nonlinear) MAP estimate for Ax. We assLm~e the
distribution for nleasuremcnt  noise for each z(i)
is also irlciepcndorlt  and Gaussian. Since tile MAF’
e s t i m a t e  o f  indcpcrldcllt  C;aLlssians is  a wcigthtcd

I e a s t - s q u a r e s  e s t i m a t e ,  w e  ccJnlpLltc:

mirl(j=s  ,  [>’N”l (l/oZ(l)p)(z(j)  - y(d(j)+i)  -

y(i)+ s(i))p]  + (1/0, (1)?) (7(1) - y(d(l)+i)  -1

s(d(l)+ i) - y(i) -I s(i))2 + (1/oX2)(i-mX)2)

1 he interpretation of this expression is :i s
follows: to maximize the posterior probability,
which is ttic product of cxponcntials,  we need to
minimize the magrlit Llcie of the exponent. If we
let i be ttlc tlistorjram  birl w h i c h  wc assLlrne the
rear wheel has advanced to (and changed to an
elevation y(i) -s(i)), tticn ttle summation from
j~3 to N-1 is of sc~Llared crrclrs between ttle
ranging sensor elevations and the corresponding
y valLles  in the hislograrn. The nex t  te rm is l~le
weighted SqLlarOd error for the middle wheel,
incorporating the histogram data for s(I) as
well as y(l). 1 he last term is frorll ttlc! Dayesian
prior distribution. Note tlmt  z(2) does not even
appear irl this expression, as the advance of ttle
front wheel involves an unknown amount of
sinkagc in the soil and so ttlere is no histogram
data  wiih which to cor-lpare.  A similar SitUation
arises with z(N) in the summation, since y(x) is
unknown ahead of the forwarclmost  sensed point.

We implicitly assume that the forward advance
is not so great as to push the next sensed point
z(N-1)  off the end of the histogram, although
this could be accounted for if necessary. We
would then perform a parabolic interpolation of
the weighted -sLlrrl-of-sq Llares to get a refined
estimate of Ax to a fraction of a histogram bin.
Whi le not str ict ly val id,  interpolat ion of  the
error funct ion sho Llld be better than taking
integer bins, w h i l e  n o t  a s  cornputationally
intensive as the more conceptual ly-correct
approach  o f  comput ing  the  min ima l  e r ro r
function on interpolated data. Note also that we
could compute mx as a fLmction  of the data here

prior to fincfing the n~inin~Ljm over i to account
for the fact that our expected slip is a function
of average terrain slope. For example, we could
compute

(, ,~N (z(j)/cl(j)))/N
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as an estimate of the slope and compute some
linear or non-linear function of ttlis  to compute
mx. We could also modify the estimates of mx

and ox? using prior cstirrlatcs to adapt and refine

our Elayesian prior,

3) Now that wc have an estimate for Ax, we
translate the histograms for y and s forward by
Ax and up by y(Ax). 1 his recluircs interpolation,
due to the non-integer nature of Ax, so we
assume tha t  l i near interpolation between
adjacent points is adequate (again to reduce
computational con)plexity). We e x t e n d  oLjr
knowledge of y forward by linear interpolation
from the translated old y(N) value to the
observed z(N) at d(N). Similarly, we extend oLjr
k n o w l e d g e  o f  s forward using Iincar
interpolat ion from the translated s(cI(2)) to a
new forwardmost value s(d(2))=y(d(2))  -z(2).

4) We need some way to incorporate the new
measurements into the histogram for y
(otherwise only the forwardmost measurement
y(N) will play a role in defining the function,
which seems to waste a great deal of valuable
information), Note that between the old d(N) and
the new d(N) we have a linear approximation to
y(x). When the vehicle moves forward by Ax
(generally less than d(N) -d(N-l )), wc will get a
new va lue  fo r  y  f rom z(N-1)  which wil l ,  in
general, not lie on the  p rev ious linear
approximation to y. Since we expect that our
meas LIrcnlcnt  noise oz(~-l)  will be qui te smal l

conlpared t o  t h e  g r o s s n e s s o f  the  l inear
interpolat ion, we would like to force the
histogram to conform to the data at this point
(the new d(N-1) point). We would also expect
y(x) to be a continuous fLmction, so that nearby
points should also be modified. For siniplicity,
we will assume that adjacent histogram bins
will be updated by “splitting the difference”, i.e.
they will be reassigned values halfway between
the new measurements of y based on each of the
z( i )  measurements for  i<N and the old (but
translated) histogram value. This is an ad-hoc
assumption made in the i n t e r e s t s  o f
computational simplicity which will hopefully
allow a fairly accurate estimate of y(x) to be
generated as all of the sensors sweep over the
surface, We can  per fo rm a  corrcspondirrg
process for s(x) by assuming that deviations
be tween  z (1 )  and  y(d(l))-s(d(l))  arc due to
errors in the rneasuren-rent  of s and not y, which
makes sonle sense because by this t ime the

i’ .11: ,,,

histogram for y has been refined with multiple
measurements while the histogram for s has
been  genera ted  on ly b y  piccewise  l i n e a r
interpolation out to the single meas Llrenlent at
z(2) (i.e. the front wheel),

5) Lastly, move the vehicle forward and repeat
the cycle.

This model and analysis are very simple and
somewhat suspect from a theoret ical
point-of-view. Flowever, as in rllany pract ical
applications, real-time performance and
computat ional  complexi ty are of  pararrtount
importance, with the alternative being not to do
any estimation at all, 1 hLls we would like to
know what the performance of this s imple
est imat ion procedure is, anti to wtlat degree it
gives improvemcrlt  over usc of ttlc p r i o r  m e a n
m ~ t c) estimate over-the-ground distance
travelled  and  no t  estirnatiny  sinkagc at all ( a n d
accepting the risk of getting StLlck). We would
also like the evaluate the usefulness of having
more ranging sensor measurements as opposed
to fewer, since each additional measurement has
cost and may only be needed for this purpose (as
rocks and craters may be detectable with as few
as two look-ahead range points). If possible, we
would like to also have a way of choosing the
distances d(3)... d(N).

Thus what remains to be done is 1) pcrforrn an
evaluation of the performance of the system by
estiniating the var iance in the sl ippage and
sinkagc  estimates by Monte Carlo numer ica l
simulation (since the nonlinear MAP formulation
is intrinsically iterative and because we want
to explicitly incorporate the e f f e c t s  o f
quantization  into the histogram bins, the effects
of rcsampting  and interpolat ion, etc.) . 7 his
simulation will evaluate the effects when the
data are not drawn from a Gaussian distribution,
such as a uni form distr ibut ion of  equal or
different mean. Lastly, we would like to
evaluate the effect on performance of varying
the number of sensed values N, of modifying the
mean mx of the prior slip distribution based on

experience, and of changes in the sensor noise
Oz(i),  which wc might adjust in an ad-hoc way to

account for the aliasing  which the point-range
measurements wi l l  have in est imat ing the
average e leva t ion  over  the  histogran-r  b ins ,
where the spectrum of y(x) might grossly
v i o l a t e  t h e  Nyquist  s a m p l i n g  ttlcorem wtlen
binned in this manner.
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T-he assumed model for y(x) in the simulation
needs to be chosen with some care. A scale-
invar iant  (fractal)  model is attractive, but we
need to recognize that the hazard-detection and
avoidance sys tem w i l l  e f fec t i ve ly  c l ip  the
distribution o f  t e r r a i n  f e a t u r e s  a t  sonle
particular scale. Similarly, a model for s(x)
needs to be formulated, which will be slowly
varying and of low amplitude. It WOLIICI be good
to assess the performance of the system when
the slippage and sinkage arc correlated, as onc
would intLJitively  expect, even thoLlgh the model
does not incorporate that effect (although it
easily co Llld). Another interesting correlation
which WOLIICJ be good to model in the sim Lllatiorl
is the fact ttlat ttlc mechanical l inkages in the
vehicle chassis cause the noise in the
measurements z(i) to be highly correlated (since
wheel pairs arc at opposite ends of links), cwcn
thoLlgh they may be Gaussian (from digitizing
analog potentiometer values or peak detection in
analog CCD scan lines).

lh_e. sim@aticm  model  for y(x) and S(X]

As mentioned above, we desire to test the
sinkage and slippage estimation algorithm on
terrain which is “scale invariant”. Specifically,
we wish to create a sample random terrain in
the form of a histogram (i.e. seq Llence)  at the
same resolut ion as that maintained by the
estimation algorithm. This is accomplished by
uniformly sampling a linear combination of sine
waves, whose  amp l i tude  i s  random over  a
uniform range extending from zero to some fixed
multiple of the wavelength (thereby ensuring
scale invariance), and whose phase is random
over [0,27K]. 1 wenty different wavelengths are
combined over the range from 1 cm to 1.9
meters, with each one 30% longer than the
previous one. 1 his range enconipasses all scales
of interest: smaller scales average to zero over
the bins and Iongcr scales are virkrally  flat over
the length of the vehicle and its look-ahead
ranging sensor. (Note that the smaller scales
will exhibit substantial aliasing  when binned,
which is an important and real effect that needs
to be modelled  by the analysis.) As mentioned
before, a “smooth” simulated terrain is realistic
here, since the geometric hazard detection
system wi l l  avoid rough or d isco ntinuo  Lls
terrain.

7 he terrain we construct here is characterized
by a s ingle paranletcr:  the rnaxirrrun”r  s lope !  o f
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each  s ine  wave  coniponent. We cal l  this
parameter the “roughness” of the terrain. Both
y(x) and s(x) are created by this technique, but
s(x) is clipped at zero so that only positive
values of sinkagc arc allowed. ‘I he “estimated”
histograms of y and s arc initialized with ttle
“actLlal” values f rom this simLIlatiorl;  from ttlat
point on the estimatiorl  procedure extends them.
1 his is reasonable since, as mentioned above,
ttle first meter or so of traverse will be on the
lander exi t  ramp and therefore known. We
arb i t ra r i l y  se t  the  rcjughness of the sinkage
fL]nction s(x) to be 20°/0 that of y(x), based on the
philosophy ttlat the terrain mechanical
characteristics are more slowly-varying than
the sLlrfacc topography.

It is perhaps worih mentioning that the approach
of combining sine waves over a large number of
different scales is computationally in tens ive ,
bLlt need only be done once to sirrrLllate  a large
number of di f ferent terrain types, since to
change the “roughness” only reqLjircs rescalin9
the vertical coordinate of a “standard” terrain,
i.e. with unity roughness. Another approach to
generating scale-invariant terrain, the use of
Gauss-Markov random sequences, needs to be
fairly high-order to get the needed range of
scales and thus becomes extremely complex to
analyze.

Specifics parameters for initializing the model
are drawn from the actual design of the Rocky
3,2 rnicrorovcr. ‘I bus, for example, the distances
from the sensed points to the rear wheel contact
point are 25, 50, 60, and 80 cm for the middle
wheel, front wheel,  downlooking  range sensor,
and outlooking range sensor, respectively. l-he
sensor noise (standard deviations) associated
with these elevation differences are 0.04 mm
for the wheel sensors, and 2 mm for the
look-ahead sensors. We normally expect the
vehicle to advance about 5 cm in each sensing
cycle.

an]ulatiQn.Ttia!s

For each trial run, wc evaluate the odornetry
error and sinkage error as a function of bin size
and terrain roughness for di f ferent input
assumptions. We evaluate bin sizes from 0.2 cm
to 8 cm, which spans ttle range from very fine to
very coarse cornparcd the the expected forward
advance per cycle. We evaluate terrain
roLjghness ranging from a n~axin-lLln~ slope at each
scale of 0.?5% to 80\o, wtlich sparls terrain from
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very smooth (with typical elevation differences
of 2 mm over the length of the vehicle) to very
rough (with 8 cm typical elevation differences
over the length of the vehicle, about the limit
which the hazard avoidance system would
permit). 1 he simulation covers 62.5 meters of
simulated terrain (25,000 bins at the finest bin
size), which is created once and then resampled
for the different simulations so that the effects
of aliasing can be evaluated on identical terrairl.

One important issue not addressed in the
previous description of the algor i thm is tile
c h o i c e  o f the search range for the
weighted-sum-of- squares (WSS). Initially, the
search was extended to 40 + 4 bins beyond the
13ayesian prior mean. However, it was found that
the simulation would occasionally yet “StLICk’4
and fai l  to advance the rover  by  the proper
a m o u n t  f o r  severa l  cyc les ,  whereupon  the
s i m u l a t i o n  l o s t  t r a c k  o f  t h e  t e r r a i n  (i.e.
presumably the internal histogram for y(x) had
no relation to the actual y(x)). T-his  was caused
by the global minima of the WSS function not
corresponding to the actual forward advance. A
simple fix for this problem was to compute the
secondary minima, and if it was beyond the
global minima and nearly as good (within a
factor of 3), then the search range on the next
cycle was extended to include that minima. Note
that, in all cases, the global minima is chosen
for’ the simulation, and only that the search
range is extended if another minima shows
promise, so that it can be selected as the global
minima on the next cycle. This effectively Cllrcd
the problem, and subsequently the simulation
was not observed to lose track of terrain.

Since we expect the look-ahead rarrging sensor
to have much worse measurement accuracy than
ttle c h a s s i s  a r t i c u l a t i o n  s e n s o r s ,  w c  wj]l
characterize the slippage estimation with the
articulation-based elevation sensing noise,
while the sinkage  is based on the look-ahead
sensor noise,

I I
Thus  we represent the results of this analysis
by plotting the sinkage or slippage error against
the terrain roughness value. I“ypically  we would
expect to have little or no cumulative error
when the terrain is very rough, and if the terrain
is smooth the algor i thm wi l l  just  rct Llrrl tlhe
Clayesian prior mean value as the result, so the
error that  acc Ljrnulates  is just tt)c d i f f e r e n c e
between the Dayesian  prior rncan and the actual
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mean value. Thus for slippage, for example, if
the 13aycsian  prior is in error by 20?4. (that is,
the actual  expected distance advanced per
sens ing  cyc le  is different from the Uayesian
prior mean by 20Yo), then we would expect the
algor i thm to smoothly t ransi t ion from smal l
e r ro r  to  20% er ro r  in  es t imat ing  t raverse
distance as the roughness is increased from zero
to a large value. We wish to establish the
natLlre o f  th i s  cu rve  fo r  bo th  slippaye a n d
sinkage. FLlrtherrnore,  to reduce computational
conlplexity, we wish to determine how coarse,
the histogram bin size can be without excessive
degradation of these resLJlts.

Table 1 shows the progranl  output for the first
test case, where the Bayesian prior
overestiniates  the forward advance by 20Y0.
Each entry in the table is the percentage
odometry  error over the !32.5 mete r  course ,
followed by the FIMS sinkage error in parenthesis
(in cm). Note that, indeed, the odometry error
more-or- less smoothly fa l ls  f rom 2 0 %  f o r
smooth terrain to near zero for rougher terrain.
Furthermore, note t h a t  t h e  p e r f o r m a n c e
improves as the bins get larger up to a point, and
then declines for larger bin sizes, especially on
rough terrain.

The two effects which seen]  to be occurring are
severe aliasing for large bins (when ttle bins are
larger than the advance of the vehicle), and poor
terrain rnodelling  for small bins. I’he  former
effect is compounded by the fact ttlat  we cannot
fit a parabola to the WSS function if the minima
is at zero bins of advance, since we do not
compute the function for negative advance and
so cannot bound the integral nlinima with val Lies
on each s ide, as needed for a parabol ic
interpolation. In this case we rrlerely set the
forward advance estimate to exactly zero. For
large bins (e.g. 8 cm when the expected forward
advance is 5 cm) this occurs commonly, and is
only sometimes compensated for in later cycles.
This p r o d u c e s  a strong t e n d e n c y  t o
underestimate the distance travelled.

For very small bins, on the other hand, the
algorithril  we have selected for modclling  the
sparsely-sampled terrain is inadequate.
Flemember  t h a t  w c incorporate n e w  z[i]
n~casurcmcnts into the histogram by forcing the
value at bin i to be consistent, and then “split
the difference” on the i-1 and i+ 1 bins. When the
bins arc very fine this will produce narrow
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b i n
( cm)
0.?5
0.50
0.-15
1.00
1.25
1.50
1.15
.? .00
2.25
?.50
2.75
3.00
3.25
3.50
3.75
4.00
4.75
4.50

SI)l  E’I’AGE  ERROR A S  A  F’UNCIION  OE’ ROUGIINESS  AND B I N  SIZE
( e a c h  er,try percent odometry  errox-, RMS sinkagc e r r o r  (cIII))

roughness -- max SIOI;C at each scale
0 . 0 0 ? 5 0 . 0 0 5 0 0 . 0 1 0 0 0.0200 ().()qoo 0 . 0 8 0 0

?0.8-1 ( 0 . 2 )  1 5 . 2 4  ( 0 . 3 )  1 0 . 3 6  ( 0 . 6 ) 6.6? (0.9) 3.5”/ (1.5) -0.83 (G.3)
20.58 (0.2) 1 5 . 7 3  ( 0 . 3 ) 9 . 0 2  (0.5) 5.16 ( 0 . 8 ) 2 . 5 8  ( 1 . 4 )
1 8 . 9 4  ( 0 . 2 )  13.5-/  ( 0 . 3 )

- 1 . ? 0  ( 4 . 5 )
7 . 8 6  ( 0 . 7 ) 3 . 6 9  (0.8) 1 . 8 4  (1.4) - 0 . 4 6  (3.4)

2 0 . 9 8  ( 0 . 2 )  1 4 . 3 - /  ( 0 . 3 ) 8.45 ( 0 . 4 ) 3 . 9 4  ( o . ? ) 1 . 9 9  ( l . ? ) ?.2-/ (2.8)
2 1 . 5 6  ( 0 . 2 )  1 5 . 6 3  ( 0 . 3 ) -/.33 (0.4) 2 . 9 1  ( 0 . 6 ) ? . 0 5  ( 1 . 3 ) - . ? . 1 ’ /  ( 4 . 6 )
1 9 . 3 0  ( 0 . 2 )  1 1 . 1 5  ( 0 . 3 ) 5 . 5 6  ( 0 . 4 ) 1 . 4 ?  ( 0 . 6 ) 0 . 1 0  ( 1 . 0 )  - 0 . 6 3  (2.9)
18.16 ( 0 . 2 ) 9 . 8 0  ( 0 . 3 ) 3 . - / 8  ( 0 . 4 ) 0 , 3 5  ( 0 . 5 ) - 1 4 . 6 1  ( 6 . ? )  -1.07  ( 2 . 6 )
18.-/4 (0.2) 11.66 (0.2) 5.51 (0.4) l.~g (0.4) -0.32  (1.0)  -1.04 (2.9)
1 6 . 3 0  ( o . ? )  11.0”/ ( o . ? ) 5 . 1 0  ( 0 . 3 ) 1.32 ( 0 . 5 ) - 0 . 0 1  ( 0 . 9 ) . - 0 . 0 4  ( 2 . ? )
1 - / . 5 ?  ( 0 . 2 )  1 1 . 4 4  (0.7) 6 . ” / S  ( 0 . 4 ) 3 . 7 9  (0.6) 1 . 6 7  (1.2) 1 . 6 ” /  (7.9)
16.29 ( 0 . 2 )  1 1 . 0 ?  ( 0 . 2 ) 6 . 0 9  ( 0 . 3 ) ~,?g (~G) -:J.21 ( 2 . 0 ) 2.01 (3.4)
1 ? . 9 7  (0.2) 7 . 6 0  ( 0 . 3 ) 1,9”/ (0.?)  - 2 . 0 3  ( 0 . 6 )  - 4 . 1 6  ( 1 . 1 )  -3.~i8 ( 3 . 0 )
15.20 ( o . ? ) 8 . 3 3  (0.2) 1 . 0 1  (0.:3) -3.58 (0.6) - - / . 0 1  ( 1 . 4 )  -4.99  (3$5)
35..98 ( 0 . 1 )  1 0 . 4 4  (0.2) 5.64 ( 0 . 3 ) 1 . 1 4  ( 0 . 5 ) -0.88 (1.?)
1 4 . 4 7  (0.2)

0 . 6 3  (3,3)
-/.45 (0.2) 0 . 4 1  ( 0 . 3 )  -5.57 ( 0 . 6 )  -8.:’5 ( 1 . 5 )  -4.91 ( 3 . 6 )

14.82 ( 0 . 1 ) 8.9-/ ( o . ? ) 2.’/4 (0.3) - 2 . 2 4  (0.6)  -4.65  (1.3) -3.43 (3.5)
1 2 . 8 3  ( 0 . 2 ) 4 . 8 1  (0.2) -5.49 ( 0 . 4 ) - 1 2 . 5 8  ( O . s ) -  1 4 . 8 1  ( 1 . 9 ) - 1 4 . 1 7  ( 4 . 0 )
1 5 . 1 4  (0.2) 7 . 6 6  (0.2) - 0 . 3 3  ( 0 . 3 ) -9.00 ( 0 . 7 )  -8.91 ( 3 . - / )  - 7 . ? 8  ( 4 . 0 )

,, :,1,:!,!,.! .! ,1,,.,’

4.”15 1 4 . 6 1  (0.2) 8.82 (o.~) 1.41 ( 0 . 3 )  -5.73 ( 0 . 6 ) - 9 . 0 1  ( 1 . 4 )  - 8 . 8 8  ( 3 . 2 )
5.00
5.?5
5.s0
5.75
6.00
6.25
6.50
6.-/5
7.00
7.25
- / . 5 0
“1.-15
8 . 0 0

1 5 . 0 4  ~o.?j 9.75 (o.3j 4 . 6 6  ( 0 . 4 )  -0.94 (0.8) -2.37 ( 1 . 8 ) 1.-/4 ( 4 . 8 )
1 2 . 3 1  ( 0 . 2 ) 3 . 3 2  (0.2) - 7 . 1 9  (0.4)-15.3:>  ( 0 . 8 ) - 1 8 . 4 3  ( 1 . 8 ) - 1 3 . 8 - /  ( 4 . 6 )
1 ? . 6 6  ( 0 . 2 ) 6 . 0 1  ( 0 . 3 ) - 4 . 0 0  ( 0 . 4 ) - 2 2 . 2 3  ( 0 . 8 ) - 1 5 . 5 8  ( 1 . 6 ) - 1 4 . 5 2  ( 3 . 5 )
1 4 . 5 4  (0.2) 6.20 (0.2) - 3 . ? 0  ( 0 . 3 ) - 1 3 . 7 5  ( 0 .- / ) - 1 5 . 8 6  ( 1 . 6 ) - 1 3 . 1 8  (~.:])
1 6 . 2 6  (0.2) 9.-/? (0.2) 1 . 2 5  ( 0 . 3 ) - 6 . 4 0  (0,8) -8.48  ( 1 . 7 )  -4.22 ( 4 . 1 )
1 4 . 4 4  (0.2) 1 0 . 0 0  ( 0 . 3 ) 1 . 4 6  ( 0 . 4 )  - 4 . 6 7  ( 0 . 9 )  -5.1? ( 1 . 8 )  -0.16 (4.-/)
10.56 ( 0 . 2 )  - 2 . 7 5  ( 0 . 2 ) - 1 8 . 8 4  ( 0 . 5 ) - 2 7 . ” / 0  ( 1 . 1 ) - 2 9 . - / 4  ( 2 . 4 ) - 5 1 . 3 5  ( 5 . 8 )
1 1 . 2 3  ( O . ? )  -2.80  ( 0 . 3 ) - 1 9 . 4 6  ( 0 . 4 ) - 2 9 . 1 1  ( 0 . 8 ) - 2 8 . 8 3  ( 1 .- / ) - 5 4 . 6 1  ( 3 . 5 )
1 1 . 6 0  (0.2) 0 . 3 6  ( 0 . 3 ) - 1 6 . 4 4  ( 0 . 4 ) - 2 5 . 0 !  ( 0 . 8 )  - 2 ’ 6 . ? 4  ( 1 . 6 ) - 2 3 . 4 2  ( 3 . 8 )
1 4 . 5 4  ( o . ? ) l .- / l  ( 0 . 2 ) - 1 5 . 0 8  ( 0 . 5 ) - 2 5 . 4 9  ( 1 . 1 ) - 2 9 . 4 4  ( 7 . 6 ) - 2- / . 2 8  (5.8)
1 5 . 2 1  ( 0 . 2 ) 3 . 9 9  ( 0 . 2 ) - 1 2 . 6 7  (0.5)- ~3.38 ( 1 . 2 ) - 2 5 . 5 0  (2.-/7274:1:I  (5.3)
1 3 . 4 8  ( 0 . 2 . ) 4 . 5 2  ( 0 . 3 ) - 1 3 . 7 4  [ 0 . 4 )  - ? 4 . 3 8  ( 0 . 7 ) - 2 5 . 0 0  ( 1 . 8 ) - 3 0 . 1 9  (4.1)
1 7 . 3 1  ( 0 . 2 ) 6 . - / 9  ( 0 . ? ) - 1 2 . 4 9  ( 0 . 4 ) - 2 1 . 2 3  ( 0 . 8 ) - 1-/ . 8 6  ( 1 . 8 ) - 1 5 . 7 6  ( 4 . 7 )

SJimul at ion Par al[ctc:rs I
AcLual nlcan  advance  PC] cycle: 5.0 cr[l, S,i Cj[lla  : 1 . 0 0  C[[L ,
Iiayesian  pl-io~- rncan cidvance  PCI cycle: 6. 0  CIII, Sig[r\:]  : 0 . 0 5  Clll !

Unit_-Rouqhfiess  l’crrajn RMS Amplitucic ] .1] n~ctcl:,  CIV121” 62.5 NLC!LCJ s

:,tat~ st]cal Atl. l-] butcs of Un]t - I<ouqhnc:;s,, Sir{~ulatecl  Tc]]airl b y  I{in Si7.c
(c:acli  cnt]-y IU4S b i n - t o - b i n  clevatic~ri c}IaIIqc  (CIII)  ,

I

R14S  CI-:O1-  i n  bin-to-bill  lirl,.:,] p]ojcctioll  (CIN) )
B i n

Si7c (cm)
x X.oo
o - - - 0 . 0 0 0 . 0 0
1 - - - 8 . 3 0 7 . 4 7
2 - - - 1 4 . 8 1 9 . 4 0
3 - - - 2 1 . 5 2 1 2 . 5 1
4 - - - ? 7 , 8 7  1 6 . 8 4
~ , . - 3 4 . 7 0 24 ..?-/
6 - - - 4 1 . 2 4 3 2 . 4 9
7 - - - 4 -1 . 2 4 39.24

X.25
2.40 1.29
9 . 9 0 7.85

16.50 1 0 . 1 4
2 3 . 1 6  1 3 , 8 1
29.”/3 18 .8 - /
3.6.33 2 6 . 4 2
4 2 . 6 9  3 3 . 5 7
4 8 . 9 0  41.42

Table 1

x.
4.62

1 1 . 5 0
1 8 . 1 8
2 4 , 7 7
31.38
3 8 . 0 2
4 4 . ? 2
5 0 . 4 3

50
4.0”1
8.12

1 0 . 8 2
1 4 , 7 8
2 .0 .58
?8.56
3 5 . 3 1
4 3 . 6 0

X.75
6.58 6.38

13.14 8.74
19.86 1 1 . 5 0
2 6 . 4 0 1 5 . 7 4
3 3 . 0 6 2?.’26
3 9 . 6 0  3 0 . 4 5
45.69 3-/.2?
5 1 . 9 1  45.52

I I
“spikes” i n  the h i s t o g r a m s ,  a n d  n o t  a t  all the procedure we have adopted seems to w o r k
correspond to realistic terrain. The proper fix quite well for intermediate-sized bins, about 2
for this would be to “remember” when and wlhcrc cm long.
each prior measurement was taken, and try to
p e r f o r m  a s ta t i s t i ca l l y -va l id te r ra in Note that the sinkage estimates in Table 1 are
reconstruction (based on some assumed terrain all about the same for a given roL!ghness, and
Four ier  spectrum), incorporating a l l  p r io r increase more-or-less p r o p o r t i o n a l l y  t o
measurements and their uncertainties. Ffowevc:r, roughness. This is intuitively pleasing, since
this would bc computational]y  demanding, and ttle high accuracy of the wheel sensors compared
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to the look-ahead sensors makes the estimate of
the fo rward advance of the vehicle ( i .e. the
minima of the WSS function) almost entirely a
funct ion of  the wheel  sensors. l“hLls, t h e
primary function being estimated accurately is
the Ioaclbearing surface y(x) -s(x), with both y
and s k)eing much more uncertain than their
difference. 1 hen sinkage is estimated using the
look-ahead sensor(s), with their large atlendent
noise. This suggests that a more appropriate
implementation for lhe actual vehicle is to use
the wheel sensors alone to estinlate  travel along
the loadbearing surface, and to use only one
look-ahead sensed value to estimate sinkagc.
Thus it is irrelevant to examine the case of
additional Iook-ahead sensing values so long as
their noise is very large compared to the chassis
articLdation sensing. 1 h e  “rOUCJhnC?SS”  SCalC! LJSWI

corresponds approximately to the HMS elevation
differences in meters over the scale of the
vehicle, i.e. a roughness of 0.08 gives 8 cm of
typical elevation difference across the vehicle.
At the bottom  of l-able  1 is  a chart  showing
some of the stat ist ical  propert ies of the
unit-roughness simulated terrain: t h e  RMS
bin-to-bin elevation change and the f3MS error irl
a bin-to-bin linear projection to the next bin, ~
each as a function of bin size. l-his table has cm
of bin size along the left, with fractions of a cm
along the top. Note that the values for zero bir~
size, which in fact don’t exist, are set to zero
for printing purposes. 1

I
There is one striking fact represented in 1 able
1: we have selected the standard deviation of
the Bayesian  prior to be 0.05 cm (lYo of the
actual advance), when the sigma of the actual
vehic le advance per cycle is  1 cm. I“his
artificially “overweights” the Bayesian prior to
show the smooth transition from 20% error to
s m a l l  e r r o r  a s  t h e  t e r r a i n  g e t s rougher.
However, the chassis articulation sensors are so
accura te  (6=0.04  mm) that we can do much
better than this. Figure 3 shows the results for
different values of the 13ayesian prior (lYo and
10% of the actual). As one can see, with lower
confidence in the prior, even on smooth terrain,
the results are very good for bin sizes of about 2
cm (ranging from 5% error on very smooth or
rough terrain to under 1% error on moderate
terrain). l“his,  again, is to be expected, since
even the smooth terrain has large excursions
compared to the sensor noise. If we reduce ttle
pr ior  var iance furlher, however ,  the est imator
performance degrades rapidly. 1 his presumably

o c c u r s  be CaLl Sf2 rT)LICh more er ror  ex is ts  in thd
terrain histogram reconstruction than would be
apparent from the sensor noise alone. Thus, if
the simulation is not “driven” strongly by the
E3ayesian  prior, it is “free” to choose any match
to the sensor data, weighted artificially heavily
due to the low sensor noise. Thus, even though
the sensors are good, the terrain estimates
which result from our sparse sampling and crude
interpolation are not nearly so good. 1 hus
w e i g h t i n g  t h e  p e r c e i v e d  e r r o r s  front  th is
function by one over the sensor variance is
unrealistic; we compensate by making the
EJaycsiarl  prior very tight. 1 hL]s there is no
particL1lar  value to be gained in evaluat ing
somewhat different levels of scnsc)r  noise.

&

Pcrcerm
(Iclor]wtry
Error 4.

2_

1.

I .25 .50 1,0 2.0 4.0

Rougllriezs  of Sczle.invariant Tcr(ai(,  (RMS CIII)

Figure 3. C)dornetry  error as a fLmction of
terrain rOLlghrK!SS  (20Y0 actLlal slip)

Numerous additional runs analogoL]s to 1 able 1
w e r e  p e r f o r m e d  u s i n g  differcrlt  sirr~ulated
terrain (using different seeds for the random
number g e n e r a t o r ) ,  a n d  the resu l t s  were
virtually identical. N o t e  t h a t  t h e r e  a r e
occasional anomalies where the performance is
poor (such as in l-able 1 at roughness 0.04 and
bin size 1.75 cm). These anomalies presumably
result when the terrain and binning processes
conspire to give ambiguous terrain for matching
purposes. This is to be expected, but so long as
it is rare and does not give worse estimates
than doing nothing (i.e. using just the prior mean
estimate), then no harm is done. 1 his is another
reason to overweight the prior distribLNion.
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Additional runs explored several issues. For
example, when the prior distr ibut ion
underes t imates  the  fo rward  advance ,  the
performance is generally good for bin sizes
between 2 and 3 cm, but that very bad
performance is rlo: uncommon. Another issue
considered was the est imat ion performance
w h e n  t h e  a c t u a l  f o r w a r d  a d v a n c e  i s  n o t
Gaussian. Once again, the performance was
excellent. Lastly, we c o n s i d e r e d  ttle systcrn
performance when the actual slip is a fLjnction
of sinkage and slope, as onc WOLlld expect. 1 he
results were evalllated  for the case when the
mean of the actual advance per cycle drops
linearly with increasing sinkage  and/or slope,
(and continuing with the non-Gaussian uniform
actual distribution). Since the very rough
terrain will probably have slopes and sinkages
which would literally stop the vehicle under
such an assumption, we clipped the left end of
the uniform distribution at zero advance per
cycle, so that the simulation doesn’t get in an
infinite loop (as would the actLlal vehicle). Hem
we have assumed that the linear coefficients
are such that a 60% grade will stop the vehicle,
as would sinkage of 5 cm. The perlorrnance on
smooth terrain was poor, as the f3ayesian prior
of 6 cnl/cycle  was much larger than the actual
average, which is 5 at best and 1 at worst,
depending on terrain conditions. However, as
soon as the roughness increases to 1 cm or so
over the length of the vehicle, the odometry
performance improves to within 10% and at 2-4
cm roughness. Only a few percent of odonletry
error is observed for bin sizes between 2 and 3
cm. This performance is very encoLjraying
considering the simplicity of the model and the
gross deviations which “reality” makes with the
assumptions underlying the model,

As described above, the optimal bin size is in
the neighborhood of 2.5 cm, which means that
there are only 20 bins of data over the fength of
the vehicle to bc accumulated and maintained, so
the computation and storage requirements are
small. Good performance can be anticipated
with onfy 2 terms in the WSS function-- one for
the Elaycsian  prior (which can be precomputcd
and stored in a tabfe) and one for !Ile center
wheel, since the look-ahead sensor is so noisy
as not to affect the forward-advance estimate.
(l-he front wheel moves onto unknown terrain,
and so is not used in the matching process. )
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Since sqLjaring  can also be accomplished as a
table look-up, the computation is of the order of
1 add and 2 table look-ups per bin, with
typically 5 bins searched. Finding the global and
secondary minima requires r o u g h l y  2
compar i sons  per bin. Maintenance of the
histogram requires a relatively few operations
also, since the histogram data can be in a ring
buffer with a pointer, to avoid actL]ally shifting
the data in an array. ‘i hus only the linear
interpolat ion and “split the difference”
operations are needed, which are simple. l-his
implies that, with of the order of 1 0 0

operations per cycle, the odonletry  estimates of
the vehic le can be nlarkeclly  improved ,  and
sinkage estimates provided.

Frelin~inory.T”esl  .BesLl!ts

1 he algor i thm descr ibed above has been
implemented on Rocky 3.2 and, as of this
writing, a few test runs have been conducted.
1 he preliminary indication is that the
articLjlation  sensor noise is substantially larger
than anticipated, leading to odometry  results
which are somewhat degraded compared to the
sinl Lllatiorls. f-lowever, it appears that, even
with the noisy data, the algorithm will give a
very reasonable hazard alarm for sinkage and
sl ippage. ( In th is case, we set the confidence in

the Bayesian  prior to be very high, and then
threshold the WSS function to trigger a slip
alarm.) Work is continuing on redL1cing  the noise
ir~ ttle analog-to-digital portion of the system.
E xtensive  tests for this system are planned for
1994.

Gonclusio.n.s

I“he MAP estimation procedure developed here,
based on a simple weighted-sum-of-squares
computation, seems to give sinkage and slippage
estimates which will allow planetary
microrovers to detect and avoid a wide range of
non-geometric hazards. Simulations suggest
that it may also improve odomctry  marked ly
over simple wheel revolution counting, and
thereby lead to a significant improvement in
d e a d - r e c k o n i n g  accLlracy  for  th is c lass of
vehicle.
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