
Reusable, Extendible F light Sof[ware for
a Planetary Spacecraft’ Protc)type

Testbed

Sanford M. Krasner*
Jet Propulsion laboratory

Pasadena, CA

AbWad

As part of the “Faster, Better, Cheaper” paradigm
for NASA missions, the Jet Propulsion Laboratory
is developing a Flight System Testbed for
prototyping and early integration of future
planetary missions, This paper describes the
development of a set of reusable, extendible
spacecraft flight software to be used as a basis
for prototypes in the testbed. This effort has
focused on identification and irnplementation of
functions which are common across multiple
missions. This effort has also developed an
intertask messaging system which supports
modification of existing functions, additions of new
functions, and porting to various computation and
1/0 architectures. This paper also identifies a
number of other JPL activities which suppc)rt
standardization and reusability c)f planetary
spacecraft designs.

Ekwkground - Re-engineeri~_@_.WJ@.t
syS12m-13WX2d

NASA has challenged the planetary science
community (including the Jet Propulsion
Laboratory) to develop “faster, better, cheaper”
planetaiy missions, with spacecraft development
and launch costs of less than $150 million,
Responses to this challenge include the
Discovery mission proposals, and the proposed
‘New Millennium’ program, which envisions a
fleet of small, highly-autonomous spacecraft,

JPL is also engaged in a re-engineering effort, to
shift from a serial, hierarchical development
process to a concurrent, parallel process. In this
process, spacecraft design and early integration
are conducted in parallel, along with spacecraft
operations development. In addition, this re-

—————.
‘Member of Technical Staff,
Avionics System Engineering Section
email: skrasner@jpl.nasa, gov

Copyrighl 01994 by the American Institute of Aeronautics &
Astronautics, Inc. No copy right is is asserted in the United
States under Title 17, U.S. Code. The U.S. Govemmenl has a
royalty-free license to exercise all rights under the copyright
claimed herein for government purposes. All other rights are
reserved by the copyright owner.

1

engineel-if]g process is cmcoljraging the reuse of
designs from mission to mission, the use of
industry standards, and the use of commercial off-
the-shelf (COTS) products,

As part of this re-engineering process, JPL is
developing the Flight System Testbed (FST)l.
“The FST will provide representative spacecraft
functionality, including “flight-like” computers,
software and 1/0 interfaces, as well as simulations
of spacecraft hardware and dynamics, By
providing a ‘flight-like” environment which is
easily tailored to simulate a particular spacecraft,
the FST will support early prototyping of system
design issues, and early integration of mission
equipment. As a multi-mission testbed, the FST
will also encourage clesign reuse, and the
application of industry standards. Various
activities to support this goal include:

Development of an easily-tailored
spacecraft dynamics simulation engine,
and a supporting library of actuator and
sensor models2,
Study and recommendations for standard
avionics interfaces, including bus
standards ,

Simulations of spacecraft
telecommunications, power, propulsion,
attitude determination and control, and
command and clata handling equipment;
Simulations of science instruments,
including data editing, compression, and
progressive trarJsmission,4
Integration with a CCSDS-compatible
ground control system,
Development c}f a reusable, extendible
set of flight software, including the
development of a reusable set of high-
Ievel spacecraft commands. This also
supports the development of a standard,

reusable concept of spacecraft software
design and implementation, and the
development of standard ground
operations tools and procedures.

kkuti!iM@mfXQmmrrfX2awmfLEurMkm

In order to provide reusability of spacecraft flight
software for future missions, a study was made of
the software functions implemented on several
planetary spacecraft, including spacecraft in pre-
project studies, under development, or in
operation, This list of spacecraft now includes:
Galileo, Magellan, Cassini, Mars Observer(MO)
and Mars Global Surveyor (MGS), Mars
Pathfinder, Pluto Express (formerly Pluto Fast
Flyby),and Clementine. These are referred to
below as the “referenced missions.”

These spacecraft span a wide range of missions,
technologies (from circa 1976 to 1994) and
development paradigms. Galileo and Cassini are
complex, multiple-instrument outer-planet orbiters
developed at JPL, Magellan was a Venus-orbiting
radar mapping spacecraft, with a very small
instrument complement; Magellan inherited a
large portion of the Galileo avionics, as well as
the Galileo Command and Data Subsystem flight
software. Mars Observer was a Mars-mapping
mission, with significant inheritance from an
Earth-orbiting weather satellite; MCX3 inherits the
MO avionics and most of its flight software,
Pathfinder is a single-string, spin-stabilized Mars
lander and rover mission with an emphasis on
technology demonstration, developed in the
‘faster, better, cheaper” mode. (Only the
spacecraft/lander software was examined in this
study.) Clementine was a lunar mapper and
asteroid flyby mission, with a focus on ballistic
missile defense sensor demonstration and
evaluation, and was also developed in a ‘faster,
better, cheaper’ mode. Galileo, Cassini, and
Pathfinder are/were built by JPL, Magellan, Mars
Observer and MGS are/were developed by Martin
Marietta, as a contractor for JPL, Clementine was
developed by Naval Research Laboratory for the
Ballistic Missile Defense Organization. Pluto
Express is a pre-project study being conducted at
JPL.

In spite of the range of mission types,
technologies, and development organizations and
paradigms represented by these spacecraft, there
is much functional similarity among the flight
software for these missions. It is feasible to

identify and implement a set of functions which
are likely to be reusable on future planetary
missions. In order to support reusability of flight
software and mission operations tools, a
corresponding set of common spacecraft
commands is also being identified. A high-level
picture of the common functions is represented by
the dataflow diagram in Figure 1.

The common spacecraft functions study identified
a “3-level” classification of functions (see Figure
2). The bottom layer consists of hardware- and
missicm-specific software components, which are
dictated by the specific hardware sensors and
actuators used. l“he reusable software design has
attempted to encapsulate the hardware-
dependencies of this layer, so that it presents a
standard set of interfaces to the layer above.
(This may be considered as defining ‘classes” of
virtual devices, which are customized for
particular applications.)

The middle layer is Iargc!ly independent of specific
spacecraft hardware and mission, and consists of
the c:ommon functions identified below. Figure 2
shows a subset of these functions.

The top layer consists of the high-level
coordination of middle-layer spacecraft functions
to accomplish mission objectives, including
system fault protecticm responses to coordinate
spacecraft resources in the presence of faults.
This layer has not been as clearly identified in the
referenced missions, since coordination of
spacecraft resources has been typically
accomplished by ground sequencing. The
reusable flight soflware provides the ‘primitive’
functions invoked by the high-level coordination.
The reusable flight software also provides a
control language whicjh may be appropriate for
implementing spacecraft coordination.

The common functions are described below:

4LfRlhkJ39fJ*~

These functions include all processing needed to
recognize and process ground commands
addressed to the spacecraft, and to distribute
commands to the onkjoard applications which will
execute them. Although each of the referenced
missicms used somewhat customized uplink
formats and protocols, future spacecraft are
expected to adhere to the uplink standards of the

2

Consultative Committee for Space Data Systems
(CCSDS).

Due to the long radio communications delays and
infrequent ground contacts for planetary missions,
each of the referenced missions includes a
sequencing or scripting capability, which allows
the ground to put command loads onboard for
execution at later times. These scripts are
implemented in ‘sequence languages” of different
levels of sophistication. All implement at least a
minimum set of capabilities, including the ability to
issue commands at absolute or relative times,
and to execute multiple scripts concurrently.
Clementine used the Spacecraft Control
Language (SCL) which is available commercially.
JPL is currently evaluating SCL and other
languages as candidates for a standard
spacecraft control language.6

Until now, spacecraft activities have been
orchestrated by ground commands, by way of the
sequence language. As future spacecraft become
more autonomous, this “sequencing function” will
evolve to a high-level ‘spacecraft coordination”
function. To achieve this transition, supporting
languages and execution engines will be required.
Various studies at JPL are currently examining
autonomy requirements and designs to support
future missions.7 The FST reusable flight
software, although not autonomous in itself, will
provide a facility for develc~ping and testing
autonomy designs.

3MWW & Traie@xy-IM2mhW2rr

Although the sensors used vary somewhat, each
spacecraft includes hardware and software to
determine the spacecraft’s orientation with
respect to inertial space. Except for F’athfinder, all
of the referenced spacecraft use gyros to
propagate inertial attitude. The spacecraft use
either imaging star trackers (Cassini and
Clementine) or slit star scanners to determine
spacecraft orientation with respect to the fixed
stars, and to correct for gyro drift.

With the availability of imaging cameras, large on-
board memories, and powerful processors, and
with the increasing need for spacecraft autonomy,
JPL and others are investigating the addition of
autonomous optical navigation, target trackingg,

and trajectory correctior]lO. These functions will
fall under the general category of trajectory
cietermination.

All spacecraft include functions to control the
spacecraft attitude and trajectory. These functions
may alsc) inclucie logic necessary to control
articulations, such as instrument platforms, solar
arrays, and antennas. These functions are
probably the most hardware and mission-
dependent, since they are strongly related to
spacecraft characteristics such as: mass
properties, thruster locations and types,
articulation axes, actuator performance, etc. JPL
is developing a set of advanced design
processes and tools 11 to support development of
attitude and trajectory determination and control
designs. One aspect of this program is an
autocode generator to implement these designs.
The reusable flight software task will identify the
architecture and interfaces to accommodate these
autocodcd components.

This category of functions also includes inertial
vectc)r propagation, which is responsible for the
propagation of ephemerides for other celestial
bodies relative to the spacecraft. This utility
function provides inertial directions to the Earth,
for uplink and downlink antenna pointing; to the
Sun for attitude initialization; to target bodies such
as asteroids or planets for observation.

5JlmlrumfmWmtrQl anl~ta Collection

The raison d’dtre for planetary spacecraft is to
return data from science instruments. Each
spacecraft provides functions to command
science instruments and collect measurements
for transmission to the ground. For Pathfinder and
Clementine, instrument operation, data collection
and formatting is conducted by the same
processor which executes spacecraft engineering
functions; for the other missions, these functions
are handled by computers dedicated to the
instruments.

The Fl ight System Testbed is funding
development of a generic instrument simulator.
The reusable flight software will provide a
messaging ‘gateway’ to send commands and
ancillary data to instruments, and to collect
instruntent data in telemetry packets.

3

!Xllkrnelr’y Data Hand rrg1“

Each of the examined missions provides functions
for collecting data from onboard applications,
storing it onboard, and transmitting data from
storage or in real-time. Although the earlier
missions used custom downlink protocols, the
CCSDS Telemetry recommendations have
established standards for telemetry data
structures.

The CCSDS telemetry standards allow individual
applications to generate self-identifying packets of
telemetry data, and eliminate the need tor
centralized time-commutation telemetry
generation services. These self-identifying
packets also enable the use of intelligent
instruments and data compression algorithms
which may not produce telemetry at predictakde
rates and times.

With the improvements in random-access
memories, spacecraft designs have moved from
digital tape recorders (Galileo, Magellan, Mars
Observer) to large RAM or solid-state recorder
storage (MGS, Pathfinder, Clementine, and
Pluto). Random access to telemetry storage
enables a number of features which cannot be
accomplished with serial input/output tape
recorders. These include the ability to interleave
different categories of telemetry on playback, to
retrieve telemetry in a different order than it was
recorded, and to release pieces of telemetry
storage as they are played back, These
capabilities are exploited in the F)athfinder design.
The reusable flight software will provide flexible
telemetry-handling capabilities which take
advantage of the packet telemetry standards and
random access storage.

The telemetry handling functions are also
responsible for generating the dc)wnlink data
stream from real-time and playback data.
Downlink data is typically encoded (e.g. Reed-
Solomon coding, convolutional encoding), but
encoding is not included in the reusable flight
software.

ZJTime Reference

Each of the spacecraft examined here provides a
central spacecraft time reference. This reference
is used as a basis for absolute-time defined
sequencing, and for time-tagging telemetry data
generation, The time reference functions also

work with the telemetry handling functions to
provide time calibration data to the ground
system. l-he ground system correlates spacecraft
time to telemetry receive times to determine the
spacecraft-universal time relation. This correlation
is used both in command planning (sequencing)
and in telemetry analysis to correlate spacecraft
activities to spacecraft position in its trajectory or
relative tc~ celestial bodies.

For some missions, the spacecraft time reference
functions have also imposed a master time
schedule on spacecraft activities. This has been
especially true for missions which use a central
time-commutated telemetry system. The reusable
flight software design provides a central time
reference but does nc~t impose a master time
schedule. This allows each application to use the
time schedule most appropriate for itself.

fi!&kltWXi.&@2@ltCQ!

Each spacecraft carries functions to measure
temperatures, pressures, voltages, currents, and
other discrete and analog measurements, The
spacecraft also provide commands to turn loads
on and off, set discretes, and fire pyrotechnic
devices. There have been some limited
implementations of closed-loop thermal control,
and Clernentine uses software to control the
propulsion system pressurization. The reusable
flight software will provide the ability to read
discrete and A/D measurements, and to
command power switches.

EcUlUX4c?@X&datiQI!. anMlXQw2rr

Due to the long communication round-trip times,
infrequent ground contact passes, and time-
critical activities (e.g. orbit insertions, flybys)
characteristic of planetary missions, planetary
spacecraft typically carry extensive fault
detection, isolation, and recovery designs. (This is
not true for the “faster, better, cheaper”
Clementine and Pathfinder spacecraft.) The initial
design of the reusable flight software does not
include provisions for fault protection logic, as it is
known at JPL. This decision was taken in order to
focus on nominal mission capabilities, and to
focus on mission-independent spacecraft
aspects, JPL is conducting a study to define a
reusable fault protection architecture. It is
recognized that fault protection designs will also
have to be made reusable to reduce their high
development cost, The reusable flight software

4

design will be revised to reflect the results of this
study.

MewageQ@xkxfMdkdwe

To enhance reusability, the reusable flight
software is designed as a set of concurrent
tasks., which communicate primarily by sending
messages to each other. For repetitively
scheduled tasks, such as estimators and control
laws, a timer service is provided to generate
periodic ‘wake-up” messages, which are handled
through the standard messaging functions.

The decision to use messaging extensively was
driven by several factors:
.1) The need to define clean and explicit

interfaces between software components to
enhance reusability. This eliminates the use
of a shared memory interface.

.2) The need to allow tasks to run concurrently at
different priorities while allowing for
communication between them.

,3) The need to encapsulate hardware-specific
operations in device drivers which provide
reusable interfaces to other software
components. For instance, interrupt
handlers and hardware-specific conversion
tasks are used to encapsulate the
spacecraft-specific aspects. Hardware-
independent messages are then presented
to the rest of the flight software. (For
example, a gyro data handler would acquire
gyro data, scale to engineering units, and
convert to spacecraft body coordinates, The
resulting gyro data message would be
hardware-independent. An uplink interrupt
handler would be responsible for acquiring
c o m m a n d codeblocks from the uplink
hardware, and would present CCSDS-
compatible codeblocks to the reusable
uplink software.)

.4) The need to add new generators and
consumers of data without modifying
existing software components. This is
required to support prototyping of new
functions with minimal impact on existing
software.

,5) An anticipated need to support flight software
distributed across multiple processors.

.6) “The availability of commercial real-time
operating systems which suppcwt concurrent
tasks and intertask messaging, In particular,
Wind River Systems’ VxWorksl 2 has been
chosen as the standard real-time operating

system for f ST real-time target
development.

.7) The prevalence of intertask messaging in the
referenced spacecraft designs (Clementine,
MO/MGS, Pathfindcw).

“(he reusable flight software provides the basic
structure lor protcltyping of new software functions
to support new missions. To simplify the
integratiorl of new software, a message-handling
layer was developed to allow tasks to broadcast
messages on the equivalent of a “software bus”.
The task generating the message does not need
to direct the message to particular receiving
tasks. Tasks which need to receive a particular
type of message may subscribe to that “message
subject”. The message handling layer is
responsible for knowing which tasks have
subscribed to a particular type of message, and
for routing the message to all receiving tasks.

This message handling layer is known as the
Task Remote Asynchronous Message Exchange
Layer (Tf {AM EL)13, l-RAMEL is written in C for
portability to other machines, and supports all
intertask messaging functions supplied by
VxWorks, including pipes, sockets, and TCP/lP
interproccssor communications. TRAMEL is
similar to the Standard Asynchronous Message
(SAM) system used on Clementine14, with the
added capability of multiple tasks receiving the
same message.

!DWJ!DPlL2nX@AQn a@ELM!fx2J%mS

The FST simulation environment consists of a
network of Sun workstations with simulations of
spacecraft hardware and dynamics running on
different workstations. The first target system for
the reusable flight software will be a Heurikon
68040 board. (The software is designed in a
machine-independent fashion, so choice of the
initial target should not affect its portability to
other processors.) The software will be written in
C, using VxWorks as the real-time operating
system. The interface between the ‘flight’
processor and hardware dynamics simulation is
an Ethernet connecticm. The VxWorks socket
utilities will be used to provide the hardware
interface portions of the device drivers.

SCL will be integrated to provide the spacecraft
sequencing and coordination function in first
quarter of 1995. This requires porting the software
to an R3000 processor . Later in 1995, a 1553B

5

interface will be installed as the processor
interface to simulated hardware in place of the
Ethernet connection.

.——. —. —
5Krasner, Sanford M., “Preliminary Spacecraft
Informaticm System Guidebook”,JPLIOM3132-
93-428, t’dov. 30, 1993

mmmarY

JPL is re-engineering its process of planetary
spacecraft development. One part of this re-
engineering is ttle development of flight software
which supports early prototyping and reusability of
flight software and ground operations from
mission to mission. This software is currently
being implemented and demonstrated in a Flight
System Testbed for prototyping support of future
missions.

The work described in the paper was carried out
at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

Reference herein to any specific commercial
product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the United
States Government of the Jet Propulsion
Laboratory, California Institute of Technology.

——

‘Casani, E. Kane and Nicholas \fV. Thomas, ‘The
Flight System Testbed”, Space Instrumentation
and Dual-Use Technologies, SPIE - The
International Society for Optical Engineering,
Orlando, CA, July 4-6, 1994

2Jain, A. and G. Man, “Real-Time Simulation of
the Cassini Spacecraft Using DARTS: Functional
Capabilities and the Spatial Algebra Algorithm,” in
5th Annual Conference on Aerospace
Computational Control, Aug. 1992.

3Caldwell, Douglas, and Savio Chau, “Spacecraft
Information Systems: Principles and Practice”,
JPL. Internal Report, July 7, 1994

%30hr, John A., et. al., “Spacecraft Command
Language (SCL) Study Report’, JPL report D-
12206, Oct. 26, 1994

7Ahmed, A., Aljabri A. S., ‘Demonstration of On-
board Maneuver Planning Using Autonomous
SAN Architecture”, Annual AIAA/USU Conference
on Small Satellites, August 1994.

Ovaugharl, Robin M., “PiLltO Fast Flyby
Autonomous Optical Navigation System
Functional Description” JPL IOM 314.8-905 July
20, 1994

9c.-r3. Chut D. Q. Zhu, S. Udomkesmalee, and M.
1. Pomerantz, ‘ Realizaticm of autonomous image-
based spacecraft pointing systems: planetary
flyby example.” In AcqlJisition, Tracking, and
Pointing Vlll (M. K. Masten, L. A. Stockum, M. M.
Birnbaum, and G, E, Sevaston, Editors), Proc.
SPIE 2221, pp. 27-40.

Io”Syster]l Algorithms for Autonomous Navigation:
Applicaticm to the Rendezvous Phase”, JPL IOM
314,3-1120, Sept. 22, 1994

l~Man, Guy K., “Advanced Design Processes and
Tools (A[IEPT)’, Internal Presentation, Oct. 25,
1994

12 Vx Work Programmer’s Guide, Wind River
Systems, Inc., Alameda, CA, 1993

13SCC,H ~urleigh, “ROME:,: Distributing C++ OqeCt
Systems”, IEEE Parallel and Distributed
Technolcjgy, Vol. 1, No. 2, May 1993, pp. 21-32.

ldwilderrnann, C,, et, al. ‘Flight Software”,
Clementine Engineering & Technology Workshop,
lake Tat Ioe, NV, July 18-19, 1994

4Lee, Meemong, Alan Mazer, Andy [loden, Steve
Groom, “Instrument Simulation Testbed’, JPL
Internal Presentation, Dec. 7, 1 !393

I

I

I ,Ai Radio Receiver } I Sequence Storage 1

- /
Codeblocks I Data & Event

!5Ewi’)c&- ‘as,
Reference Wake-Up

Messages,0 O!her

I Di&retes I

; Accelerometers : i Thrusters & Valves i

-+7-

(

I I
I I
I
I

I

I ~ r

I
I

~

Am
I

‘ /

‘A
Airm-tion“.. -”.. .

\ I

Figure 1
Common Spacecraft

Functions

