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Introduction

In the atea of astrodynamics, theconplex missions euvisioned for the upcoming
decades will demand innovative spaccorafi trajectory concepts and efficient design tools
for analysis and implementation], Itis al<oinccasingly apparent that accomplishment of
many short- and long-term scicnceandoglarstiongoals will requise a broader view that
expands the 1ange of options available Mo ecently, for example, the astrophysics
community has had a highlevel of’ inteicslininissions to the vicinity of the ibration points
in the Sun-Yiarth system, Spacecrafi n 01 bits near libration points offer valuable
opportunities for investigations concert g s dar and heliospher ic effects on planetary
environments. Current design capabilitie: for siich missions have significantly improved in
the last five years but arc still [imited Cornputar jonal approaches to determine a nominal
trajectory are essentially manuvalvuuciic | scarches in a repime  where  conic
approximations arc not adequate; standar d tar cting and optimization stiatepics based on
linear variational methods arc very difiicottoey | ply and frequently break down because of
the nonlinearities and high sensitivities it the problem Al the same time, recent evidence
supports the theory that the nchdynsni s in histegi on of space may lead to previously
undiscovered t ypes of trgjectory solutions. Coiventional tools simply do not incorporate
any firm theoretical understanding of the nnlti-body problem and do not offer the
flexibility to take further advant age: of thedyn: micalselationships in producing aternative
trgjectory designs.

This work has focused onobtaining « (lear er under standing of the fundamental,
under-lying dynamics associated with the tgjectory design problem, with particul ar
emphasisin multi-bed y regimes, wher ¢ qualitati ve infor mation isneeded concerning sets
of solutions and their evolution Nonline:r dynamical systems theory is a key component
in progress toward that objective s type ofimatheinatical analysis involves issues such
as periodic orbits, stability, instability, quas periodic motion, asymptotic propertics,
stiuctwr e of solution sets, escape, synunieics, :nd evolution of a dynamical system Much
insight has resulted from an investigatin of one family of periodic solutions and its
stability characteristics; invariant manifc!ds acsociated with these periodic orbits have
alrcady served as a guide to pencraterarnmalpa thways near the libration points. But the
primary objective here is to use thisinfarinat on for trajectory design, Rather thau rely
solely onexperience and previoudly deferming: solutions or propagate, somewhat blindly,
until a useful trajectory appears, t he goulis to knowledgeably select and compute
tigjectory arcs irr the multi-body problemn Tle arcs can then be patchied together for
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optimal results in complex t raject ory dasig n Thus, this investigation also supports
development of the necessary capabilitics for actval mission planning,

Background

In its most basic form, trajectory desig: in orbital mechanics iSsan attempt to find a
solution to the n-body problem (subjccito various constraints, conditions, and  possibly
other perturbative forces). 11 owever, oven s the basic n-body problem, no general
solution is known to exist cxceptmthecase #: 2, i.e., the two-body problem.
Never Mess, much success has bean achic ved inomission desipn and analysis with
traditional approaches including comcanialysi-, petturbation theor y, high or der analytical
approximations, and extensive sinnilations ‘1 hese standard analytical and numerical
methods do provide very accurateinferination, even for multi-body problems (in the
Eai Lb’s neighbor hood or inter planciary), because the present techniques can v ery
accurately represent the evolution of a pe 1 ticular tr ajectory. T he most challenging
interplanetary missions involving multiplc gravity assists have been designed with such
tools. Note, however, that any result bus«d on two-body solutions must exist in the. larger
context of the n-body problem.

It is now apparent to some thatcnly alimited region of the orbit design space has
actually been exploited. Inthiswvicw, itisnecessary to generalize the model and explore
larger regions of the solution space i the jrencral wbody problem. A logical step to
increase the complexity of the modelinthe basic problem is 10 examine the cases n -3
andn= 4, i.e, the thrce- and four-bodv protlems. 1 n such cases, two or three 01- more
gravitational fields can be of equal sigmiticance  Afler 200 years, the thr ee-body problem
remains unsolved, but, in the last 20 ycars, substantial progress has been made in
recognizing that the unique dynaniic characteristics in the problem can be used for mission
design The trigger that refocused inte: e~tinthe problemwas the discovery of new types
of particular solutions in the three-body prob. em: penodic halo orbits and quasi-periodic
Lissajous trajectories. These tigjec tories (1l ee dimensional in configuration space) are not
found in the region of the solution space oceu pied by solutions to the two-body problem.
It is significant that lissajous trajectori. s exist in the vicinity of the libration points. A
number omissions have incorporated]isssjous and/orhalo orbits as part of the trajectory
design: ISEE-3 (1978 launch), W*N11 (currentiy entoutetoarrive 1997), SOHO (1995
launch), ACE (1997 launch), and ot hers eatrently indevelopraent 1t is not a coincidence
that the trgjectories employedin these missionsare all similar, Trajectory design is
traditionally initiated with a bascline nis-ion concept 1ooted in the two-body problem and
conics. These libration point missionstecullen baseline concept derived from solutions to
the three-body problem. Since no suc h gencre! solution iSavailable, the mission concepts
are founded upon past numerical scar chresults Thus, the options have been very limited.
The fcw enpincers with trajectony designexpurience in this region are also aware of the
high scnsitivities in the problem andimay expend mmuch time and eflort to even slightly
modify a previous type of solution thtouogh a numencal search process. But this type of
mission holds much potential for s¢rcnce anld the possibilities expand tremendously should
ncw classes Of solutions be discover edin thistegiorn
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Dynamical Systems and Invariant Manifolds

Now, however, the best plimpsevetachieved into this region of the solution space
is available through the application of nonlinear dynamical systems theory. Some
fundamental concepts have already provide:d ¢ itical clues that are used here in generating
t raject orics. ‘ J'he geometrical theory of d yuan . war systerus (fi amPoincaré)is based cm the
phase portrait of adynamical systenac disclissed in various mathematical sources. The
geometric model for the set of all possitle st=tes of a system is the phase space or state
space, which is assumed to be an opensctin 1{”. The state space, filled with tragjectories,
is the phase portrait of the dynamical sy -tem Given the. differential equations that govern
the system, the goal is to “solve” the cquat lons and produce the phase portrait. Flat,
Fuclidean spaces will not suflice for all geomet ric models; in somne cascs, curved spaces
(differential manifolds) are necessary 11 e manifold then becomes the geometrical model
for the space of dependent variables. In the ptiase space, theremayalsobe found special
solutions: fixed points (or equitibinimpeints), periodic orbits, qua$i-periodic motions,
homoclinic and heteroclinic motions.

An invariant manifold is a sutface (m-dimensional) defined by the following
propei ty: orbits stat ting on the sui{ace 1 emz 0 on the sui face throughout the course of
their dynamical evolution So, aninvariant nenifold isa collection of orbits that form a
surface, Additionally, the set of ottnisthat approach or depaitan invariant manifold
asymptotically arc aso invariant mawfolds (¢ nder certain conditions) which arc called
stable and unstable manifolds, respectivdly  1nreaching toward a complete understanding,
of the global dynamics, knowledgie of the iny ariant manifolds of a dynamical system as
well as the interactions of tileil 1espective stsble and unstable manifolds s absolutely
aritical. In the. three-body problem, the 6 - dincusional phase space canbe envisioned as
composed Of subspaces of vatious dineisions. Thus far, the link to these subspaces or
manifolds has been the halo o1 bits (peaodic o1bits) and Lissajous 1 ajectories (quasi-
periodic motions) in the vicinity of the ibnation points  These concepts can be useful in
exploring, trajectory design issucs and oftcrng new trajectory options.

Re.suitsExamples
Earth-to- Halo Transfers

Conceptually, the transfer desipn process consists of identifying the subspace (or
surface) that contains the endpoiuts of the boundary value problem - the “endpoints’are,
in fact, orbits ~ and then moving o the surlsce from the. point (orbit) of origin to the
destination orbit. Knowledge of the gcinacinical aspects of the problem near the libration
point orbit can lend information thati. valusble in determining, the surface, ie., the
transfer path. Specifically, the (neat) poriodicn y of halo orbits has been exploited to
calculate invariant manifolds associated with pz 1 tcular points along, the nominal halo path.
Rather than a targeting problem to reach « spe cified insertion point on the halo orbit, the
transfer design problemn becomes one ofinse tion onto the manifold, directly from the
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Earth parking orbit, if’ possible. Oriceontheni nmaltransfer trajector y (stable manifold),
the spacecraft approaches the halo o1 bise symp- otically, with no inscrtion maneuver; flight
time is very reasonable. The rcsulting, zlrorithm has been very successful at quickly
producing insight intotheproblen, s well as generating Farth-to-halo transfer
trajectories. The distinct advantage of f hisapp oach over the 1 raditional shooting method
isthat the designer ultimately has ynoi ¢ cenrol over cach aspect of the. trajector y; and, the
transfer path emerges without arandoiisen I ol process The application of this approach
canbe seen in Fig. 1, in a rotating coor dinat ¢ framne. The plot 1epresents the x - y
projection of a transfer to a halo orbit re v 1., 10 the Sun-Farth system that is roughly the
same size as the halo used for 1S1ik-3(Thex  axis IS parallel to the Sun-Earth line.) By
understanding the enavior Of the stablamanifolds along the halo orbit, a point can be
identified along the path that is acsociatcd withia manifold that passes closc to the Earth;
the t1ajectory approaches the halo o1bit along a natural pathway that 1esults in a lower
cost; time and effort to produce the resuiltistainimal and the process can be automated.
The Moon's gravity could also potentially e employed to “bend” the manifold; with
sufticient bending, the manifold 1 nay pz ss th Farth at the correct altitude for a wide
variety of Lissajous orbits, Bending, the three boady manifold with 2 lunar gravity assist, or
redefining the manifolds in the fourbody problem, offers sipni ficant advantages in
designing transfers to Lissajous traject aries ovecthe complete | ange of amnplitudes.

More Complex Trajectories

These coneepts can be uscful il ¢xj Joring other trajectory design issues and
offering new t rajectory options. Comple: trajecton es can be created by shifting from one
sutface to another any number of time s Jhis theoretical view can be demonstrated in the
successful design of trajectories bet wee: halo Nl issajous orbits atound different libration
points. Experience With the evolution of siable and unstable mamfolds hassupgested the
existence Of hetcroclinic connections between libration point o1 bits when they arc viewed
as asymptotic limit sets. New design optionsatiseif itis possible to take advantage of this
dynamical relationship. In the Sun-Ixarth systen, it isnow known that there exists a family
of bet croclinic.-typc connections bctwees: 1 iss<jous and/or halo orbits associated with L,

and 7., Two examples demonstrate 1 heiscfuliess of this family,

Farth Return. Consides the o' lowing mission concept: depart the Earth on a
direct transfer to an L Assajous; afier some number of revolutions in the halo/Lissgjous
orbit, return to a specified Larih siteforaq zyside landing. A din cot1ctum fiom an 1,
orbit isimpossible; adirect return froman )., 1 issajous, however, will sesult in a dayside
re-entry. Thus, the first trajectory segaentivcludes the, transfer (siwdlar to Fig.1) from
Earth to an /1, Lissajous. The tarpet /., isszjous orbit is sclected withan - out-of -plane
amplitude equal to approximately 300,000 kin. The tsnsfer is direct, with no lunar
swingby, and is computed using knowr: infonnation cone.crnirg: the stable manifold
associated with this Lissajous orbit; thus, the o1 bit mscr tion cost is less than 4 m/s. After
some number of revolutions in the Tis.ajous orbit (her C it is 41¢evs), a dayside landing
requires that the spacecraft mustapproz:htln 1 arih fr orn the far side. To achieve such a
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result, two types of trajector Y arcs acucorporated. Numencal experiments in the three-
body problem suggest a heteroclinic- ty pe ¢ Gnnection between Ly Lissajous trajectories
and 7., orbits. The current L, 1 issajous otl t is shightly smaller in size than is necessary
for the connecting path (as currently known), but it is possible to shift to a heteroclinic~
type path and cssentally increase the cnergy to reach the 1., Tissajous. Thus, the second
trajectory segment departs the /., lissajous orbit and, at the first x - axis crossing, a
mancuver is implemented and the pattoroves 1o the 1., 1issajous trajectory Subsequently,
afler less than one quarter revolution in the /., orbit, the spacect afl departs along & path
that is penerally consistent with an vnstable manifold (associate.(i with the L, orbit) that
passes close to the Earth. This thitd trajeciory segment requites only a small final
mancuver to hit the appropriate reenty conditions. This final result is computed in a full
model andiepresentsa stiong basclincolution. (Seclip. 7. ) Note that the 7, Lissajous
trajectory was actually designed fir st unlike conventional approaches --  -since
departuie (for L,) from certamn types of 1evolutions was desireable The transfix from
Farth to the J, Lissajousis easily sblc to zceommodate this requirement.

“Ballistic Lunar Capnn e.” 't 'he second example coneetns another member of
this same family Of heteroclinic-type ¢ ovnec {ions between the Sun-}iarth J, and L,
libration point orbits. For the moment, consider only the Sun -Yarth three- body system.
1 ‘xperience With the stable and unstablejvanilolds, and the intcractions that produce the
heteroclinic paths, reveals that fhe soruenembers of this family “skitn” the lunar orbit as
they move between the libration paints (1 ¢ither direction) If a particular connection is
identified from 7, toward 7, the timing wiliresultina path that intersects the Moon.
The velocities along this path ai ¢ such thiwhen the spat.cc! aft passes close to the Moon,
the orbital parameters With 1epectto the Mooucsultinalunar capture, i.e., the
eccentricity relative to the Moon can becorr puted to be less ihan1.0 (actually, in (his
example, ¢ =.81), The resulting trajectonyis shown in Fig#2. Note that this result is
produced in the fult model that includes colar radiation pressure J-his trajectory is familiar
to many trajectory desiguers as & “balli st lnnacaptws C.,” and sinilar to the trajectory that
was employed in the Japanese Riten nission. It was originaily discover ed numerically as
an isolated integrated solution. It is niow kuow:1to be amember of an extensive family of
natural pathways in the Sun-Earth thi ce-tody poblemn. itis straight forward o locate and
compute using invariant manifolds Since the heteroclinic paths aso existfrom /, toward

L,, it is expected that another such solution canbucomput ed as well
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Figure 1: Transfer to L; Halo with 4. = 170,000 km; Dalo Insertion Cost = 20.3 m/s.
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Figure 2: Barth Beturn Jvajectory
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Figure 3: Ballistic Lunir Capture Trajectory



