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~ An Ad ams Guy Does the Runge-Kutta

Fred T. Krogh

Jet Propulsion Laboratory, Pasadena, CA

An Et* order explicit Runge-Kutta  code, DXRK6,  based  on forrnul=  of Dormand and Prince
has been developed. It provides a wide variety of options and incorporates some (minor) new
algorithms. Based  on the testing presented dohe, the code compares well with other Runge-Kutta
codes Sufflcien~  results are given for the reader to judge for themselves how this code compares
with a variable order Adams code of the author’s.  The author remains a fan of multistep  methods.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Certijcation  ond testing;
G.1.7 [Numerical Analysis]: Ordinary Differential Equations—Sing/e step methods

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Runge-Kutta,  Fortran, C, Testing

1.  INTRODUCTION

When asked to write a new Runge-Kutta code I began by trying to convince the
requester that for his needs, precise tracking of GPS satellites, a variable order
Adams code would be more appropriate. Among the requirements, all of which are
reasonable to expect in a general purpose library code, were the following:

Output at Arbitrary Points.

G-Stops. That. is, the capability to give output (and perhaps change the definition
of the derivatives) at points defined by a function of the solution. A vector of s u c h
functions can be defined by the user.

Extrapolator G-Stops. As for G-Stops above, but with the constraint that no
derivative is evaluated beyond the point defined by the G function. This is desirable
(it can be fudged) in the model for solar pressure. There is no problem in using
the interpolator G-Stops when passing from full sunlight to partial shadow (the
earth’s penumbra) or when passing from full shadow to partial. But there is no
reasonable definition for computing the derivative when leaving the penumbra.
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At) 13t” o r d e r  e x p l i c i t  Rurigc-Kutta code,  1) X1{K8, t,a.wxl ori formulas  of Dormand  al}d }’ril]ce
IIas twcJI  dctwlo~wd.  It ~,rovides a w i d e  v a r i e t y  of cr~,tio]ls  and i!lcorporatcs  s o m e  (rnirjor)  rlew
algorithms. Based  on ttlc testitlg presmited  dolw,  the code compares well with other Rullge-Kutta
codes. Suflicicllt  results arc  given for tl)e reader to judge  for themselves how t}lis code corri pares
wit}l a varial)le  ordel  Adarl)s  code of tllc  auttlor’s.  ‘1’he  author ren)ains  a far[ of mrrltistel}  methods.

Categories and Subject Ikxriptora: C.4 [Mathematical  Software]:  Certification and  testing;
C;. ].7  [Numerical Analysis]: Ordil\ary I)itTerential  Equation--Single step  methods

Celleral  l’erms:  Algorithms, I,anguages,  I’erforltlarlce
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1.  INTRODUCTION

lt’herl  asked to write a xIew Ru]lge-I{utta  code I began  by trying to convil]ce the
requester that for his needs,  precise tracking of GPS satellites, a variable order
Adams code would be more appro])riate.  Among the requircme]lts,  all of which are
reasonable to expect  in a general  purpose liblary code, were the following:

Output at ArtIitra7y Poi7tts

G-Stops. That, is, the capability to give output (aIld perhaps chauge  the definition
of the derivatives) at ~Joints  defi~led b-y a fullctiml of the solution. A vec.to~ of such
fu~lctions  can be defi~led by the user.

Ezh-apolatory G-Stops. As for G-Stops above, but with the constraint that no
dcrivatilre  is evaluated bcycmd tile point  dcfirlcd by the G function. ‘1’his  is desirable
(it can be fudged) i~i t}le model foI solar pressure. There is 110 problem  in using
the interpolator G-Stops when passing from full sunlight to partial shadow (the
earth’s pmlumbra)  or when passing from full shadow to partial. But  there is no
reasoI1atrle  defitlitioxl for computing tile derivative wheI1 leaving the penumbra.
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Fi7sf ffmivativc fem~ts  7r1ay  bc l)rcsm~t.  IJ1 a.g is IJ1 olml)l~ Ilot .goillg to  I)c ill t llc
nlodc], Lul just  iu case tile c o d e  slloll]d be gel Lmal e]]ougll to lLa~idlc i t .  T h i s
precluded the use of llullgc-l<ut  t a-h’yst  I 61n formulas, \vllicli ottlerwisc  would have
given better lmrforlllallce.

No U S C: oj i71tmd sad wL7’iafJlcs  o~ ccJ77LnLo71.  This is to allow tile i~ltegr-atio~k
pact-age to switch het~vrwn different satellites with all the data needed to co]ltiuuc
the i~ltegratio~l left ill the users data s}mcc.

A/iouJ 7“CVC7W7  co7n7n1J71icati07t  /07’ co7wJrLti7w  de7’zwrtivcs.  This  lneans  the dc’riva-
tivcs are computed by doirlg a return, ratllm tha]l by callirlg a user suljplied  sut)-
routine. The code cau be usecl Ivith eit}lw forward cm rmrerse  cox~l~~~~l~licatic)~l.

Thc coffc ShOU/d bc ?“uLso71u/I1y  cflicit’Tlt.  ~~Ie requestc!r  was llot h a p p y  Wit]l t]lc!
perfornlallce  t]e was getti~]g froln a siul~)]c’  4t” Runge-Kutta code he had throu’11
together.

Thc code should bc si7npk to u71dcrstand. l’}lisw&s tllel~rirllary  re&so~la Rullge-
Kutta method was preferred over the use of a variable order Adauls  code. The
interaction of son]e  of tile requirements above, with choices that were rnaclc early  ill
tile deve]o~mlent  have riot led to a code wllicll is entirely satisfactory with resl)ect
to this recluiremellt.

L i s t ed  below’ areadva~itages  that irl sc)rllc’  a})~)licatio~ls  rllaybe i~ll])ortallt.

(1) This code provides a full set of features, and appears to compare well with
existin gRunge-]{utta  codes. (It docs not llowc’t’(:r ~la~re])ro~’isiorl  forsavi~lgtlle
solution for later interl)olatiorls.)

(2) Runge-Kutta codes have rnucl, better rouud-off  characteristics thar,  Adams
codes, and thus if you are tryirlg  to get t}le last few bits of acculacy  possible
using standard floating point arithmetic, Ru~ige-Kutta  codes are the thing to
use. There is a rtiodification  of the Adams codes w’llich the author believes
would give them the edge here. But  it would require another derivative evalu-
ation per step (Ada~ns would still be more efficient. ) and sigl]ificaYlt additional
complexity and overhead.

(3) Theoverhead  issig[lificantly lower that]  for tl)e Adams c.ode compared with
here. ILelie\~e tllco\erlleado  rlttlcA daltlsc odecouldb  esigrlificalltly  ixtl~Jro\ed
with very careful attention to cc)di~lg the loop w’hicll updates differences and
predicts for the next stel). The iclca is to code this loop so the compiler generates
code which works well irl a ~)i~)eli~led erlvironment.  But Runge-Kutta methods
should still retain a rloticeable  edge.

(4) J’ariab]e  order Adams methc)ds (if tllcy are going to be efticiellt) are always
cortl~mtirlg on the edge of the houudary  of relative stability. As a consequence
t]le local e r r o r  estin]ates  tend  to tmu~lcc  ar’oulld  a great  dea l .  I ]Lave heetl
im]mssed witil the smoc)thness i]l tllc error  estiulatcs ger]erated  by the Ruruge-
Kutta rnetl]od,  a~ld this tra]lslates iutc] slightly better ~)ror)ortiouality between
tile actual errors ancl errom  requested.

This paper begi]ls by discussi~lg tllc basic algoritl]rn,  theu describes ~’arious  as-
I)ects of tllc algorithms used in tile coclc, gives some com~ne[]ts orl the user iriterface,
and fl~lally son]e  results. Tile al,soritl]ulic  details are givcvl to ])rovide  reasolla}dy
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col]ll)lct c doculllelltat  io!l for w’llat vms do]le al]d lwrl]:i]js ;IS a soul M’ of icle:is t o ot 11-
ers; 1  do~l’t fee] (’llougll  of l}IC al.goritlllllic S}mcc lms Iw(vl cxaTILiIlccl  lIew t o  treat
tllc details as recolll~tlc’~lclatio~ls.

2. THE BASIC ALGORITHM

Rullgc-Kutta forlllula.s are used to solve

s’” = f(t, y), y(t~)  gi~ml, (1)

wl)erc  y and f arc a vectors w’itll 7)1 co~n~)o~lellts.  Because of tile desire  fox eflcicncy
tile hig]lest ordet forlnul~~ availat)le ~v}lich allowed fm interpolation to arbitrary
points, arid provided for stepsize  cmltrol  were selcxtcd.  The formulas by Dormaud
and Pri~lce as used in t}le code 1)01’853  give~l in [Haircr et al. 1993] appear to fit
this requiremelit.  The code DOP853  was used as a starting point, although the
codes XIOW look very different.

I) OP853 allows the user to interpolate to arbitrary points, or not. !f’he  iutmpola-
tio~l option adds 25$Z0 to the number  of derivatives required. Since this cost. is only
required on tile steps in v’hich an interpolation is actually done, it u’as emy  to de-
cide to modify DOP853  so that this  cost only occurred on such steps. Wow, at] easy
25% inll)rcn’emcnt  when the stel)s requiring inter~)olation  are only a small fraction
of the total! The interaction of this choice with the G-Stop  code ancl the option
for using reverse comtllu~lication IIad a greater inll)act  than was first appreciated.
The choice made  was not necessarily wrorl.g, but it was not, obviously the right one.
With an Adams code allowing for reverse communication, and for both types  of
G-Stops does not  complicate the code uuuecessarily,  since the code is ready to do
i~lterpolation  at any time. Jt’itll  a Runge-Kutta code one could make  a good case
for gi~’illg up this 25%, or I]ot  allowi~lg  for reverse communication, which would
also simplify other parts of tile code. IJsi~lg a Ruuge-Kutta code with a lower order
which does not requile  extra derivatives to do the interpolation would add much
more tha~l 25% to the cost as we shall scc later.

To clarify the prob]en], imagine that the code has just discovered there is a G-
Stop occurring inside the step just about colnplcted.  It now needs to get three
more derivative values before it has the data required to iterate for the zero. M’it}l
forward com~nunication,  the ititer~)olatio~l routine could be called, it could check if
derivatives are needed, and if so coln~)ute them and store the required data. With
reverse  communicatio:l,  one gets the code’ for setup of interpolation tatlgled  UI) with
the code used for the various stages  of the basic Ru~lge-Kutta  method.

3. ON THE CHOICE OF NORM FOR ERROR CONTROL

I have in tile Imst used all I,M, norm because it scmned  to Ine not tc, nlake much
clifferwnce what )Lorm was used, arid the I,N, norm allows orle to flag the offendixlg
equation whc~] the requested accuracy car) ~lot be oLtailled  for some reason or there
is smne sigrl of a discontinuity. I am i]ldel]ted to George Hall who suggmt ed to me
in a conversation some years  ago that tile 1.2 ~lorm has a desirable sr[loothl]ess
pro~mrty. (See also, [Hall atld Higllaln 19&S]. ) This 1 believe is sufficient reason  to



4

\vhcre 7~ is the absolute  accuracy C’urrmltly being requested for tile it” coln~mllent

of y. These  formulas have been writtal in terms of the squares to enlphasize  the
fact that tile code: internally  works  witli tile squares of nor~ns  Irlost c)f the time.  If
there were a direct  estimate c, for tile erm~ in vi (which it turns out there isn’t)
we would be intcrmted i]) liee])il]g  [ le[l~ soll]cwvl]at lCSS than 1.

4, GETTING THE STARTING STEPSIZE

1 reco~nmend [Gladvwll  c{ al. 1987]  and [Watts 1983] as starting points for infornla-
tion CM1 what has twcm dmie by others. Nfy biases llavc led to different clioices  than
~~ladc in these  papers. hfost  important, if oxle changes the problem by replacing y
with oy, t with /?i, cl)atl,ges the ~i by a factor of a, and changes all t cwtput  ~)oi~lts
by a factor of ~, it is desirable that, (to within the effect of round-off errors) one
get Q times the solution obtai[led  lvith Q = 1. If any part of an al.gorith]n does not
have this kind of scale irlvariallce,  it will certainly ~nake tile wrong choices in soxne
situatiolls.

Scco~ldly  I wanted so~netllitlg  simple, with assum~)tiorls  that are easy to urlder-
stand. The  former because one can not do a perfect job  at reasonable cost, so why
not do so~~icihing  cheap that works well a good part of the time?  Tile sccolld so the
user has some chance of recognizing Ivhen  the automatic choice is nc)t likely to do
a good job or more likely to recogrlizc why a bad automatic choice is being made.
It should also be kq)t i~l mitld that fcm ma~ly Imoblenls  the user will have a better
idea of what to usc for a]l initial ste])siz,e  tha~l dots tile cc)de.

The algorithm sketched here requires one additional function evaluation. One
Illight corn~)are  this with the variable order  Adanls  code DI\’A used in some com-
parisons later. DI\rA requires the user to make a guess, but even vrith very bad
guesses it rarely requires more tha~l two additional fu~lction evaluatiotls.

It is assumed t}lc norln of the k + lsl derivative of y is p times the IIorm of the kth
derivative, independent of k. N’orms are weighted 1,2 norms based on the accuracy
requested for the various components of y. Clearly this is not an assumption that
one would want to count on, but it does have the ad~.antage of scale invariance.
One should keep in mind that if a poor choice is made, it probably only costs at
xnost  a couple of steps  worth of function evaluations, and if the choice is so tct-rible
that it leads to some arithmetic excc~)tion, one can input a starting stepsize.  This
assumption implies that tile start illg stc~lsiw should be ])ro])ortioxlal  to 1/p since
the error  should be proportional tc) (hp)8.

The extra derivative evaluatio~l is obtai~lcxl afte] taki~lg a~l hler step of ]mlgth

(3)

where the square of tile ratio of the estilnatcd to requested errol  or] latw stej)s is
not allowed to CXCWCI  d, a~ld lhl is set to .0625 if I If 117  is O. (In the code d = .16
is the default, wl]icll  IHCIAIIS a stq) wit,h estimated error / requested erro~ > .4 is



5

reject  cd. ) The  Collst ant .0625 was ~)iclied as it seelncd t o work leasmlably  }vell, and
tile (1/16) sixlc( tile lllctllod  is of 8~” 01 del (xccall it is tllc squal”e of t lie llolrus  t IIat
is corn~)ut,ed).

Let f] dulotc tllc f colll})uted  from t}le result of taliillg  tllc above Euler  step, f .

tl]e f at the i~litial I)oil)t, aud h] tllc II used i~l taking this Euler  step. Tile size of
tllc ste~) used to take  tlw first ste~) is give.u by

ltm[h,l if Ilfl – fO[l T = O
81h11/llfl – ff)ll, AC if IIfoll,  &’ IIyoll, = Q

(llYollT/llflllT)  (wYo117’]6 else if IlfO[lr  = (1
Ih,l ]/fol/T/llf,  - f,,l]r else if IlyollT = O (4)

({

h/lf,llT  l/follT 3.51/fol/T
l)~~llniu  50 ———

)
Usual case.

ilfl -  follTllYollT’  [ f l - f o i l ,

The second term ill tllc “mill” is to keel) a (very crude) estimate of lh~l < 3.5,
where ~ is the eigen~wlue of largest magnitude of 8f/Oy.  Iu the first term, the

factor of 50 was picked because it seems to work reasonably well. The rest of the
forlnu]a  is Lassed cm taki~lg the geometric Ineali of two estimates for p ill computing
the initial h. Here and elsewhere  (cxcc~)t  for the very last step), when discussing
h, Ihl is f[)rced  toliet)etwrec~l  ~rlilli~~~ur~l  a~]d maximum ~’alueswhicb  by default are
O, and tlledistarlcct  ot liefilial l)oiut.

5. ESTIMATING ERRORS

Au order 8 error estimate would require eveu more derivative cvaluatic)rls than the
12 now required to take a step and thus is not atrailable directly. As in 1101’853, an
order  5 alld an order  3 error  estilnate are availal~le. I,et & = II Order 3 estimates I l;
and Z3s = II Order 5 estimates II?. A smaller and slightly smoothed order 3 estimate
(squared) is obtained with & = .01 (& +- .001 (last value for ~,)).

If E5 < fi3 therl  errors seem to be reasonably rapidly converging aud the E5 error
is extrapolated based ou the value of }}~. Ot}lerwise fi?5 is used. Thus the estimate
for the square of the error (or more precisely, the quantity used for corltrolliug  the
stepsize)  is given by

E = ———
I}L12 Es rl,ir,(l,  &,/fi3)]— . ---- (5)

nu~nber  of equations that have some kind of error control imposed

I like the idea of saving derivative values by extra~)olating  to get errol estimates
ill this way.

6. SELECTING THE ST EPSIZE

Irl my work on Adarns codes 1 ha~re fourid it useful to usc past history to select
the next stepsize  based on what  tllc error  ou the next step is ezpected to be, rather
than sinl~}ly using the error on the curre]lt  step. Similar ideas are used }lere. Au
alternative would Ilave been to use control theoletic teclluiques  ass described itl
[Gustafssou  1991], but  there was nc)t time to try both

I{ccall that d is the value that E defirled by 13q. (5) is not allowed to exceed. lu
additiorl,  tllcrc  is a ~jarar~lcter f (default value is 4.6 x — lrl .01 ) wllic}l is what  the
code attelnpts to kcc~] – lrl R CIOSC  to. Imgaritl\rns  are used si]ice OI)C gets  sll]oot}lm
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ljre(lict if)lls vw king Ivit 1] tile ]ogarit l]~ns of t lle crlors.  Sulmxir)ts  ale used hclmv
to dellotc  tllc ste~) lIUIIIIWI , ~vitll 71 dmlotillg  tllc curlellt  sterj, w)d t h u s  E,, is tile
squ;ire  of the error  Cstil]late 011 tllc currel]t  stel).

First ccnlsiclcr  the case wlIcll  a ste~) has  twcll rejected hccause  E,, in 13q. (5) is toe)
large. The code never reduces h l)y IILorc  t}la~l a factor of tuw, on tllc assuml)tion
that if it had do~le SUCI1  a~i uluiatisfactory  jot) i~] prediction, tllcrc  is a good chance
it is duc to a discontinuity it) whicl] case a bi~lary searc}~ is going to be as efficient
as arlytlliug.  If the rejected step is due to a ral)id change it] behavior, that is more
likely to come from the tail of the interval, w’llicll will play a smaller lcde wl]erl the
st cpsi?,e is reduced. Tl\us it is reasolmble  to assulne  the error  is proportional to }Ls.

(6)

W’hen the step is ~lot rejected, a model is needed in order to select the next
stcpsize.  (A common simple model would be assunle  that the error is proportional
tc~ hs. ) An “observation” r,, is giver] by lxt E,, – 111 fir,, where E,, is (h,, /h,,_l  )16&_l.
Thus if r,, is O, and & IIas  the desired  value, it appe.ars thestepsizei si deal. But
if this cor]clitio~l is satisfied o~l the current ste~), and on t}le ~)revious stel) Trl–l was

slna]l, there issonlerca.so~)  toex~wct  that it might be hig on the next step and that
performance will be i~npro;wd if this is anticipated. The code attempts to model
T,, writl)  a linear functioll  c)btaincd usixlg a w’eighted  lca.st squares fit to past values
of rk. 1’llcI1 h,,+l  is selected by replacing lr113,1  ~vith lrl 13,,  +t,l~l fo~ purposes of
stepsize  selection, wllcre f,,~l is wrhat the linear  mode] predicts for r,l.~l when it is
computed on the next step. Thus h,l+l  = h?, x e -(n, E.+t+f”+, )/16.

lftlleobservation  forr~ isvreig}ltedbyo(’’-~2/2  andobser~’atiorls  are assumedto
have been processed forever, one obtains a simple algorithm for obtaining a solution
to the fitting ])1’oh]cnn.  (Tl)e code  uses w = 1/2. ) Assuluing  tile mode] for rk is
.givenby u-t b(k-n+l  ),weorllyn  eedtosolvef  era. Thellornla lequatiorl sdefirlirlg
the values of a alld bhave the form

(8)

v’llere C,, = w * (,, - 1 -t r,, a~ld 7],, = WTl,, _ 1 – (,,.  And thus

I–W2
Q.—

[ 1(,, i ;-g– 1/,, (9)
w

As written above,  gettir]g o only requilm 3 multiplies atld 3 adds since w is a
constant. Tile code actually uses something slightly more complicated. If r,, > 0,
(,, if is not allowed to be bigger than nlax(2  * &l- ~, 4), and otherwise is not allowed
to be smaller  than nlin(2 * <,,-1, –4). The effect of the last of t}lese conditions
is that t}le stepsize  call illc)ease  by a factor of at mc)st 1.284 . . . if things are just
starting to look easier, and if things  keer) looking sufficielltly easier this factor of
allowed i]lcrease  is squared 01] succeedi~lg  ste})s.
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~JIlfortllllat,c,ly, tllmx, i s  IIIorc. ]~litial values  nlust hc assigl)ed  t o  < aIId 7/, a[]just-

mcnts  m a d e  lVhCII  a stejj is wjected,  and overly olltiulistic  iucreases  i~i h must be
~nmtec. ted against. (U]llikc SCHUC codes howwver,  there is no rwstrictious  on hCNV big
ml incxeasc in }~ is allcnvc’d, as lm)g as a ~mt te~ IL of loIlg  terltl  i~icrcascs is cstablislicd.  )
Tile follo~’iug sunlulari~es  tile rfct ails.

(1) \Vl]eIl  starting set u = –2 and p = –2. At the eud of the first step, set v to
– 1, ar]d at the e~ld of tlie seco])d  st q) set it to 0. Tile usc of p is ctescritmd
below; tllc larger  II, tl]c ]UO1  e conservative the choice of h. Also set ~ = –32.
Tllc Ilcw ste~)size  ~~,,~ I must satisfy ln(l~,,+  I /h,, ) < –(/16. The only time ~
is likely to influence stepsize  sclectiou  is wllcrl the prog[am  tllillks  there is a
cllaxlce the stcpsize  should  be restricted due to stability concerns, or just after
a step is rejected, aud thus  furtllcr  discussion of < is post~)oned  to the following
section.

(2) M%en  71u is <0, i,t~ 1 is set to O. There is not enough informaticm  on how to
bias the choice of stepsizc.

(3) When nu is -1 (tile sccoud step), set (Z = rz/(1 - w) and qz = -rz/(1  - ~)’.
These are the values these cluantities  woulcl have if the current values had been
the values for it) irlfiuite nullll)er of past steps.

(4) J3’herl  a step is rejected, set p = 5 (he conservative for a bit), reduce both ~
and 7/ by a factor of .001 (lo~ver tile weight on the past, the present appears
different), and set llL R,,+ I = & – in F;,, – f (adjustment for the change Leit)g
made in h).

(5) When p s O the code is less conservative in choosing h,,+,. In this case f,,+, =
nlax(u,  —/ — III 13,1 + p).  h’ote that 1}~,,~ 1 [ will he larger the smaller, i.e. more
n e g a t i v e ,  i,,+l. Therl p is reIJaccd  with  nliu(- .5, r,, + { + lU E,,).  T h u s  WIKXI

E,l is smaller, this will make p smaller, aud this makes it more likely a will
be used in place of something bigger than a in t}le future. If there has been
no pattern of things getti[lg  easer  to illtegratfe, p = –.5 which means Ih[ can
be boosted by at most c511G = 1.03 . . . over the h that results from using the
comrucui simple  nloclel mcnltioued earlier.

(6) When  p >0, f,,+ 1 is set to max(r,,, p) aud jf is replaced with p – 3. This case
happens only for brief lJeriods after a step has been rejected.

7. CHECKING FOR STIFFNESS

One ordinarily expects & < Es)  (ill Section 5) since the fifth order error estimate
is typically quite a bit more accurate t}larl is tlw t}lird order error estimate. If
this condition is corlsistently  violated, tlwe is a reasonable  chance  the systen) is
stiff. (This ca~l also prohal)ly  occur ~vhe~l t}le acculacy requested is unre~so~lable
given the precisiol] with w}lich the clerivatives are computed. The cc)de protects
against, this, but  unlike IJI\’A, o~]ly wlle~l tile derivatives are computed to llearly
tile full precision of the arithmetic usecl. ) This condition is used as a filter  to
restrict stepsizc  iucreases  and to clccide cm whether  to do a nlore  expensive check
for stiffness. The test has bee~l tuned to work reasonably well on V’ = --y and thus
will prohahly  not do quite as well at restrictilig the stepsize  on ot}ler stiff problems.
(It sl,ould l,c~wever do t~cttcl t},a~l codes ~vllic}l  make IIC, effort to detect  st iff~,ess or
to restrict tile stepsize  WlIeII SUCII  a~j]wars likely.)
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Recall, that tllc stcjlsim  is al~vays mstricled so lrl(h,,+ I /h,, ) < –(/16.  In order
t o  get sltlc)ot 110 sc’lect io:l of t Ile stel)sizc ~vl)cvl stability it is li~llitccl by stability
conccrllsj  the code ul)datcs  ( frcm~  its initial value of –32 as follows.

(1) If ES < fi~, subtract 6 fl om <.

(2)  When  & > fi3, < = ( . 0 0 4 7 5  –  ~1+/1~5)/(.0019 + fi3/Es). (Srw wi]at I m e a n
by tu~iillg?)  PerlIa~)s  the  kind of thing done here might be improved with a

judicious chc)ice of the formulas for Es and & wit}lout losirg a~ly important
characteristics of t}lcse forlnulas?

(3) If a step is rejected, ( is set to 3.2.

If a high percentage of recent  steps have E5 >63, there is a rcn.solmble chame
that stiffness is limiting h, and that a diagnostic  should be given. The following
algorithm is used.

(1) Let ~ be the current  step Ilumber,  fi be the step number the last time  13~ > ~3
was observed (k = O initially), and u be a variable set to – 12 initially.

(2) When & > fi:+, assign new values to u and k as follows: o = .8’--ku + ~ and
k = ~. If u > 3.3615~ – 5.2544, tlle~l o is set to –1.1 x 10 30 to flag that an
additional check is desil ed at tile end of the step.

(3) At the end of the step  if a <-1.01 x 10 3 0, the ratio s = h21/8f112/116y112  is
formed. If s > 9, a diagnostic is give~l and o is set to – 1030 which has the
effect of delaying arlothcr  diag[lostic  of this type for a large number of steps.
If s s 9, 0 is set to O, and if l% > As continues to be satisfied frequently, the
check that, rccluircs  computixlg s. will be repeated.

The coefficients for updatirlg  a are such tliat if a is very close to O, t}~erl 5 successive
steps with fi5 > ~j3 are just. barely  suflicicnt to trigger thc~ additional check.

8. THE USER INTERFACE

The user interface is dcsi.glcd  with the followirlg goals in rnirld

(1) It should be simple to use for sirn~)le  USC.
(2) It should support a wide range of functior]ality.
(3) It should be possible to add new features without any changes being required

in the usage for cc)des using earlier versions. This was also a goal when DI\’A
was writterl  in the early 1970’s, aud has proven to be a very good idea.

(4) It should be possible to use a very similar interface for a multistep method I’m
planning to write irl t}le future. (This code would include provisiorl for stiff,
differential-algebraic,  and delay equatiolls,  [Krogh  1992]).

(5) It should be possible to usc sorr)c of tl)c features with no real lid to be aware
of the others. Hypertext documentation would make it possible to move closer
to this goal.

(6) As rnucll as is rcasorlable,  user’s rmt interested in a feature should not pay a
cost for features they  are xiot using.

The calling scqurn]ce has  t}ic forr]l

CALL DXRK8(TS,  l“. 01’T,  II) AT, DAT, \VORK)
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tvllcrc all al gunlmlts  al c ar~ ays. ‘1’S contains  f. //, arid tj, tt)e firlal  tinle, lrllicll  ~nust
tw specified, auri Y coltai~ls  tllc cur]e]it  value of y. 01’T  can collsist of a sill.glc O.,
ill which czLsc tllc illt egr’at io])s is do]lc f]ol[l TS(l ) to ‘I’S(3) using a default Inixed
absolute/relative errm test ~vith a tolcv allcc of c 75, W1lCIC E is the s~nallcst rlulllbct
for wllicll 1 + ~ + 1.

IDAT is used to collllnullicatc  status illfor’lnation  to/fronl the user, co~ltai~ls di-
nlellsior] i]lformation  about va~ious arrays 011 the first call, and is used to store
interl]al  state. DA1 and 1$’ORK are arlays used for internal floating lloillt nun~-
bcrs. If calling the integl ator to CIO separate i~lt egrat  ions a~ld one quits at the proper
time, WORK need not bc saved in order  to ccnlti~lue tile current integration.

For most U S C, OPT,  tl]e o~)tion vcctol  is needed to specify the usc of optional
features. 117c have been using optio~) vectors  of various flavors for 25 years, and
have found them useful  for offering a wide variety of options without uudue  effect
on code efficie~lcy while allowillg for new features without impacting past usage.
This array containsa  rgumentst hat a~)pear  ill groups.  Agroup(startixlg  in]ocatioll
1 or just after  tlle~)revious  grc)ul>)  co~lsists ofaIlol)tiol~  itldexiderltify  i~lgtheo1~tiorl,
followedb yaargultlerltst llatdel)elldol  ~tlleol)tiollir ldex. The]ast option  must  be
O., w’hicb  ser~’es to flag tllcelld ofthco~]ticnls.

I am convinced  tlkat a codc should do all it ca~) toencouraget}lc  uscrtc) think
of tile equatioxls as belonging to different groups. For simple  problems there is
just onegloup,  and tile user need say~lotlli~lgs~)ccial.  Thus by usi~l.g options  one
can specify equation grou~)  boundaries. Certain options can be specified that will
apply  starting with the start of the cume~lt groul), until this option is c]langed
for some other  g[-oup of equations. Ikanlple  sareerrorcolltrol (6 types, including
none), diagnostic out~)rrt  to be lninted or riot, attempt to maintairl  extra precision
for some variables, turn off obtaining  illtcr~)olated  values (when i[lterpolating)  or
turn back on. DI\’.A  does not have this later ca~~ability  and a user integrating
scmle 40,()()0  equations With all interest i~l iliterpolating  only three of them could
have used it. The arguments for making it easy to grorr~)  equatiolls  are even more
compelling whe~l a code is designed to handle stiff equatio:ls.

Both DIVA and DXRK8  allow for tlie possibility that there lnay  bc several G-
Stops Ofdifferenttypcs  and multiple  requests for output at specific vtdues of t. I
find it interesting that when output comesit has a tendency tocomc  in burlcbes,
and thus a higher probability than might be expected for lots of the above to occur

i n  a single step. I  have always  found it  a  bit  challenging toiusuretbat this  output  i s

provided to the user in the correct order. This is an argument for making control of
this  output an illtrinsic  l]art  of the cc)dc, ratl)cr  t}lan assuming that sirllply allowing
the user to specify the Ilext ])lace wllcre outr)rrt is desired a~]d a.wunlillg they can

d e a l  w i t h  com~)licatimls  in tllc tricky c a s e s .

Since the G-Stops bring in a Lit of extra code, a separate subroutine is used
fo~ this function. If this  optioll  is recluestccl,  the user will get flags from time to
time letting }lim know that g’s ~)cwd to he conlputed  and this subroutirle  cal led.
Relatively little code is neededin  tllcxtlailli~lt[:grato~  tc) support this feature.

If reverse comnlutlicatiorl  is xlot used, clerivatives (and G-Stops) are computed
in a user coded routille,  DXRKISF,  a~d wllell au outr)ut point is reachccl, the user
coded routirle  DXRK80  is called. O~lc call usc forward communication for one a~ld
reverse  for tile other  if dcsiml. W’c Ilave used fixed nanles  lni~llarily to avoid tllc
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rllist alw users  solllet irlles  Illakc of folget t illg tile exterlml  stat elllcllt ttmt is required
\YllcIl  IIalnes  are }msscd.  I t  a lso rllakes tllc call a little ]Ilorc cmnpact.  \\’c Mim’c
t]le extra flexibility  of Usirlg arl)itral’y ILalucs does !lc)t buy much, u’hen  o~ie ~a~l use
different file names  fo] different routi~lcs if desitcd,  at)d if integrat  iug nlany different
cases in oxie routine,  a case statclncl}t  ill a sillgle routine is probably the cleaucst
way to do things.

9. TEST RESULTS

At the end of this  ~jal)er ale figurm givit)g results  fo~ a number of Iiunge-Kutta
codes a~id fol DI\’A. l’llesc  r e su l t s  were ohtaincd  011 a 133hl Hz Pentium  ( I E E E
64 bit a r i t hme t i c )  with the Ijatley F’771  colnpi]er. The test problems are those
su,ggcstcd  in [Krogll  1973], w}lcre reaso~ls fol using these particular test cases are
givcul. Sixlcesoul eoft})csetcst  ~)rotjlett~s }la~'ealso bcclluscd ixlt}le de~rclc]~)r~lc1lt  o f
the codes 1 have writtell, the result uucloubtedly  have a slight bias  itl favor of my
codes. (I, of course, do believe it is slight. )

Rcfcrences  fortlle nlethodsused  irltlle various  codes are: for DOP853 (atld for
the formulas  used in DXRK8),  [Haircret  al. 1993]; for RKSUITE,  [EIrankin et al.
1991] and [Kraut  1991] (these  bcirlgcitedwitll ttledocur~lerltatiorlt  ilat comeswith
tllecode  dc)wllloadcdf  roxtl~letlib);  a~ldforl JI\~A,  [Krogh1974]  and [Krogh  1994].
The  test ~)rogrartl  allo~~’s  forillter~)olatioll  to output points when it isavailatde, or
integrating to an output point and then  continuing  from that point. The number
of output points is not large, the follow’iug table summarizes w’here the codes arc
required togivercsults. (K = 1.86264. ..)

Casm I’oiuts
1, 2, 3, 7 10, 30, 50
4, 5, 8 271, (h, 16rr
9 27r, 47r, . ..167r
6 K, 21[, . ..28K

10 6.192169 . . .
11 0, 1

In connection Wit}l the results,  I would  like to note the following.

T}ie overhead is computed by dividing the total CPU time (which is re]watablc  to
almost tllrec figures) by the number  of fu~lction evaluations. As would he expected,
DI\rA stands out in having rnuell nlore overhead than the other codes. On some of
the test problems, errors are computed at the end of every step, and since DI\~A
takes smaller steps, this works against Dl\7A slightly, lmt I suspect this bias is too
slnall  to nicasure.  Surl)risitlgly, eve~l on tllesc  simple test problems, DI\~A take less
total time than some Rutlge-Kutta nwtliods  on some problems, particularly at high
accuracy. The codes itl RKSUITE  have surl)risingly  large overheads relative to the
otllel Runge-Kutta codes. I uras surr)rised that support for reverse conlmunication
and kccpil]g all informatiorl  on the state of the integration in arrays pased to
DXRK8  did I]ot  have a noticcahle  ilnl)act  0]1 its overhead. Finally it should  be noted
that CVC]) itl the most ex~wllsivc case, tile overhead for 10,000 function evaluatiorls
~vhicll is a rcaso~lably lo~)g illtcgratio~l,  amc)unts to less than a second.
Tile distance 011 t}lc abscissa frorll a ]najor  tick lnark  to t}le nlillor tick )nark on it’s
rig}lt rcl)resex]ts  a factor  of tv’o ill ~wrforlna~lce.
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DOI’853 u’it h irit.erlmlat  icnl r equ i r e s  almut 25(X ]rio]e fullctiml  evaluat  icnls tharl
wfit l]out. as cm~wctcd. It also l12Ls slightly IIlore overhead ]mr ful]ct ioIl evaluation

Tvhen  intcq)olating.  Othcl tha]) tflis, 1)01’853  and DXRK8 a r e  a l m o s t  indistim
guisllable.

There  appears to be little rcm-son to  use  the low ordel codes in RKSUITE  since they
arc  not ~loticeably  more cflkicmt  at low accul acics are a lot less efflcicmt at high
accuracies, and carry hi.glmr overhead IW] futlctiorl evaluation.
Tllc 7-8 pair in RKSUITE  is slightly  bet tm on the linear problcvns ~vhicb usc a
nearly constant  stcpsize  than DOP853  and DXRK8.  This appears to be due to the
formulas rather t]lan ilIl~)lc~~le~ltatic)lls of t}le Iuethods. The reverse situation alJ-
pears  to h true fol problem 8. h’ote that this code does Ilot allow for interpolation.
Exce~)t for problem 4, DI\’A integrates all sccoud order equations  without tmeakiug
them up i]lto first order systmns.
For problems 9-11, results for DIVA could be improved by almost a factor of 2 by
skipping t}le 2nd derivative evaluatiorl  of tile step based on the results in [Krogh
1976].
Error tolerances were adjusted I)y a fac’tc)r  so that the global errors OIL problem 3
were nearly  equal for the differ-cut nlc!thods.  (Error proportionality scc!med to be a
bit more uniform OX1 this problem than on the others. This factor was then used
for all l)roblclns.
The Runge-Kutta lnethods  can get, better accuracy tha~l the Adams code.

Runge-Kutta methods are somewhat borirlg :- )
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