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An 8!% order explicit Runge-Kutta code, DXRKS, based on formutas of Dormand and Prince
has been developed. It provides a wide variety of options and incorporates some (minor) new
algorithms. Based on the testing presented dohe, the code compares well with other Runge-Kutta
codes Sufficient results are given for the reader to judge for themselves how this code compares
with a variable order Adams code of the author's. The author remains a fan of multistep methods.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Certification ond testing;
G.1.7 [Numerical Analysis]: Ordinary Differential Equations—Sing/e step methods

General Terms: Algorithms, Languages, Performance
Additional Key Words and Phrases: Runge-Kutta, Fortran, C, Testing

1. INTRODUCTION

When asked to write a new Runge-Kutta code | began by trying to convince the
requester that for his needs, precise tracking of GPS satellites, a variable order
Adams code would be more appropriate. Among the requirements, all of which are
reasonable to expect in a general purpose library code, were the following:

Output at Arbitrary Points.

G-Stops. That. is, the capability to give output (and perhaps change the definition
of the derivatives) at points defined by a function of the solution. A vector of such
functions can be defined by the user.

Extrapolator G-Stops. As for G-Stops above, but with the constraint that no
derivative is evaluated beyond the point defined by the G function. This is desirable
(it can be fudged) in the model for solar pressure. There is no problem in using
the interpolator G-Stops when passing from full sunlight to partial shadow (the
earth’s penumbra) or when passing from full shadow to partial. But there is no
reasonable definition for computing the derivative when leaving the penumbra
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1. INTRODUCTION

When asked to write a new Runge-Kutta code | began by trying to convince the
requester that for his needs, precise tracking of GPS satellites, a variable order
Adams code would be more appropriate. Among the requirements, al of which are
reasonable to expectin ageneral purpose library code, were the following:

Output at Arbitrary Points

G-Stops. That is, the capability to give output (and perhaps change the definition
of the derivatives) at points defined by a function of the solution. A vector of such
functions can be defined by the user.

Eztrapolatory G-Stops. As for G-Stops above, but with the constraint that no
derivative is evaluated beyond the point defined by the G function. This is desirable
(it can be fudged) inthe model for solar pressure. There is no problemin using
the interpolator G-Stops when passing from full sunlight to partial shadow (the
earth’s penumbra) or when passing from full shadow to partial. But there is no
reasonable definition for computing the derivative when leaving the penumbra
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First derivative terms may be present. Drag is pr obably not goiug to bein t he
model, but just in case the code should be gerieral enough to handle it. This
precluded the use of Runge-Kutta-Nyst1om formulas, which otherwise would have
given better performance.

No usc: of internal saved variables or common. This is to allow the integration
package to switch between different satellites with all the data needed to continue
the integration left in the users data space.

Allow reverse communication for computing derivatives. This means the deriva-
tives are computed by doing a return, rather than by calling a user supplied sub-
routine. The code can be used with either forward or reverse communication.

The code should be reasonably efficient. The requester was not happy with the
performance he was getting from a simple 4" Runge-Kutta code he had thrown
together.

The code should be sitnple to understand. This was the primary reason a Runge-
Kutta method was preferred over theuse of a variable order Adams code. The
interaction of some of the requirements above, with choices that were made early in
the development have not led to a code which is entirely satisfactory with respect
to this requirement.

Listed below are advantages that in some applications may be important.

(1) This code provides a full set of features, and appears to compare well with
existing Runge-Kutta codes. (It docs not however have provision for saving the
solution for later interpolations.)

(2) Runge-Kutta codes have much better round-off characteristics than Adams
codes, and thus if you are trying to get the last few bits of accuracy possible
using standard floating point arithmetic, Runge-Kutta codes are the thing to
use. There is a modification of the Adams codes which the author believes
would give them the edge here. But it would require another derivative evalu-
ation per step (Adams would still be more efficient. ) and significant additional
complexity and overhead.

(3) The overhead is significantly lower than for the Adams code compared with
here. I believe the overhead on the Adams code could be significantl y improved
with very careful attention to coding the loop which updates differences and
predicts for the next step. The idea is to code this loop so the compiler generates
code which works wellin a pipelined environment. But Runge-Kutta methods
should dtill retain a noticeable edge.

(4) Variable order Adams methods (if they are going to beeflicient) are always
computing on the edge of the boundary of relative stability. As a consequence
the local error estimates tend to bounce around a great deal. 1have been
impressed with the smoothness in the error estimates generated by the Runge-
Kutta method, aud this translatesinto dightly better proportionality between
the actual errors anderrors requested.

This paper begins by discussing the basic algorithm, theu describes various as-
pects of the agorithms used in the code, gives some comments on the user interface,
and finally some results. The algorithmic details are given to provide reasonably



complete documentation for whatwas done and perhaps as asour ce of idcast o ot h-
ers; 1 don’t feel enough of the algorithmic space has been examined here to treat
the details as recommendations.

2. THE BASIC ALGORITHM

Runge-Kutta formulas are used to solve

s” =f(1,y), y(to) given, (2)

wherey and f are a vectors withn components. Because of the desire for efficiency
the highest order formulas available which allowed for interpolation to arbitrary
points, and provided for stepsize control were selected. The formulas by Dormand
and Priuce as used in the code DOP8&53 given in [Hairer et a. 1993] appear to fit
this requirement. The code DOP853 was used as a starting point, although the
codesnow look very different.

DOP&853 dlows the user to interpolate to arbitrary points, or not. The interpola-
tion option adds 25% to the number of derivatives required. Since this cost. is only
required on the steps in which an interpolation is actualy done, it was easy to de-
cide to modify DOP853 so that this cost only occurred on such steps. Wow, an easy
25% improvement when the steps requiring interpolation are only a small fraction
of the total! The interaction of this choice with the G-Stop code ancl the option
for using reverse communicationhad a greater impact than was first appreciated.
The choice made was not necessarily wrong, but it was not obviously the right one.
With an Adams code alowing for reverse communication, and for both types of
G-Stops does not complicate the code unmnecessarily, since the code is ready to do
interpolation at any time. With a Runge-Kutta code one could make a good case
for giving up this 25%, or not allowing for reverse communication, which would
also simplify other parts of the code. Using a Runge-Kutta code with a lower order
which does not require extra derivatives to do the interpolation would add much
more than 25% to the cost as we shall sce later.

To clarify the problem, imagine that the code has just discovered there is a G-
Stop occurring inside the step just about completed. It now needs to get three
more derivative values before it has the data required to iterate for the zero. With
forward cominunication, the interpolation routine could be called, it could check if
derivatives are needed, and if so compute them and store the required data. With
reverse communication, one gets the code’ for setup of interpolation tangled up with
the code used for the various stages of the basic Runge-Kutta method.

3. ON THE CHOICE OF NORM FOR ERROR CONTROL

I have in the past used anl.,, norm because it secmed to me not to make much
difference what norm was used, and the Lo, norm allows one to flag the offending
equation when the requested accuracy caumnot be obtained for some reason or there
issome sign of a discontinuity. | amindebted to George Hal who suggested to me
in a conversation some years ago that the L2 norm has a desirable smoothness
property.(See aso, [Hal andHigham1988). ) This 1 believe is sufficient reason to



prefer the Ly norm to the alternatives. Thus ||v]| and |}v||; are used for

m T’

IVIF =D vfc and IVl = Y (wi/7)? (2)

1=1 1==1

where 7; is the absolute accuracy currently being requested for the it* component
of y.These formulas have been written in terms of the squares to emphasize the
fact that the code: internally works with the sguares of normsmost of the time. If
there were a direct estimate ¢, for the error in ¥ (which it turns out there isn't)
we would be interested in keeping ||e||; somewhat less than 1.

4. GETTING THE STARTING STEPSIZE

1 recommend [Gladwell et a. 1987] and [Watts 1983] as starting points for informa-
tion on what has been done by others. My biases have led to different choices than
made in these papers. Most important, if one changes the problem by replacing y
with ay,t with gt, changes the 7iby a factor of «, and changes al toutput points
by a factor of §, it is desirable that (to within the effect of round-off errors) one
geta times the solution obtained witha = 1. If any part of an algorithin does not
have this kind of scale invariance, it will certainly make the wrong choices in some
situations.

Secoudly | wanted something simple, with assumptions that are easy to under-
stand. The former because one can not do a perfect job at reasonable cost, so why
not do something cheap that works well a good part of the time? The second so the
user has some chance of recognizing when the automatic choice is not likely to do
a good jobor more likely to recognize why a bad automatic choice is being made.
It should also be kept in mind that for many problems the user will have a better
idea of what to use for an initid stepsize than dots the code.

The algorithm sketched here requires one additional function evaluation. One
might compare this with the variable order Adams code DIVA used in some com-
parisons later. DIVA requires the user to make a guess, but even with very bad
guesses it rarely requires more than two additiona function evaluations.

It is assumed the norm of the k + 1% derivative of y is p times the norm of the k'*
derivative, independent of k.Norms are weighted L norms based on the accuracy
requested for the various components of y. Clearly this is not an assumption that
one would want to count on, but it does have the advantage of scale invariance.
One should keep in mind that if a poor choice is made, it probably only costs at
most a couple of steps worth of function evaluations, and if the choice is so terrible
that it leads to some arithmetic exception,one can input a starting stepsize. This
assumption implies that the start ing stepsize should be proportionalto 1/p since
the error should be proportional to (hp)¥.

The extra derivative evaluationis obtained after taking an Euler step of length

)V
g = 0625 I (a2 yine ®
|1}
where the square of the ratio of the estimnated to requested erroronlatersteps is
not allowed to exceed d, and k] is set to .0625 if [If}[, is 0. (in the code d = .16
is the default, whichncans a step with estimated error / requested error > 4 is



reject cd. ) The constant 0625 was picked as it seemed t o work reasonably well, and
the (1/16) since the method is of 8% order(recall it is the square of t he norms t hat
is computed).

Let fidenote the f computed from the result of taking the above Euler step, f.
thef a theinitial point, aud h;the h used in taking this Euler step. Tile size of
the step used to take the first step is give.u by

100 |hy | ifllfi = || - =0

8 (I l/|If - folls else if |foll & |lyoll- =0
(1voll- /1If:11-) (@/[lyoll2) " dse if [folls = 0

I 1ifoll- /1If - foll- dse if [Iyoll- = 0 4)

g min [ 50 k|ifi]l,  Ifollr 3-5ifoll- Usil case
VIR - Sl llvoll:” tri-roiry S

The second term inthe “min” isto keep a (very crude) estimate of |hA| < 3.5,
where X is the eigenvalue of largest magnitude of 9f/8y.In the first term, the
factor of 50 was picked because it seemsto work reasonably well. The rest of the
formula is based cm taking the geometric mean of two estimates for pin computing
theinitial h. Here and elsewhere (except for the very last step), when discussing
h, |k|is forced to lic between minimum and maximum values which by default are
O, and the distance to the final point.

5. ESTIMATING ERRORS

An order 8 error estimate would require even more derivative evaluations than the
12 now required to take a step and thus is not available directly. As in 1101'853, an
order 5 and an order 3 crror estimate are available. Let E5 = [|Order 3 estimates ||?
and Es =] Order 5 estimates ||2. A smaler and slightly smoothed order 3 estimate
(squared) is obtained with £ = .01 (E5 +- .001 (last value for £3)).

If E;< Esthen errors seem to be reasonably rapidly converging aud the E.error
is extrapolated based ou the value of E4.Otherwise Es is used. Thus the estimate
for the sguare of the error (or more precisely, the quantity used for controlling the
stepsize) is given by

_ |h[> Es min(1, Ey/Ej))
" number of equations that have some kind of error control imposed

()

I like the idea of saving derivative values by extrapolating to get error estimates
in this way.

6. SELECTING THE ST EPSIZE

Inmy work on Adarns codes 1 havefound it useful to usc past history to select
the next stepsize based onwhattheerror ou the next step is expected to be, rather
than simply using the error on the current step. Similar ideas are used here. Au
alternative would have been to use control theoretic techniques as described in
[Gustafsson 1991], but there was not time to try both.

Recall that d is the value that E defined by Eq. (5) is not allowed to exceed. In
addition, there is a parameter £ (default value is 4.6 =~ — In .01 ) which is what the
code attempts to keep — In F close to. Logarithuns are used since one gets smoother



predict ions wor king wit i the logarit hins of t he errors. Subscripts are used below
to denote the step number , with 1o denoting the current step, and thus £, is the
square of the error estimate on the current step.

First consider the case when astep has been rgected because E,, in Eq. (5) is too
large. The codenever reduces h by more than a factor of two, on the assumption
that if it had done such anunsatisfactory jobin prediction, there is a good chance
it isducto a discontinuity inwhich case a binary search is going to be as efficient
as auything. If the rejected step is due to a rapid change in behavior, that is more
likely to come from the tail of the interval, which will play a smaller role when the
st epsize is reduced. Thus it is reasonable to assume the error is proportiona to k8.

hypy1 = max (.5,0('“ H"“””’) hy, (6)

When the step is not rejected, a model is needed in order to select the next
stepsize. (A common simple model would be assume that the error is proportional
to h®.) An “observation” r,, is givenby n E,, —In E,,, where E,,is (hy /hpn-1)8En_;.
Thus if r,, is O, and E, has the desired value, it appears the stepsize is ideal. But
if this condition is satisfied on the current step, and on the previous step r,,_ jwas
small, there is some reason to expect that it might be big on the next step and that
performance will be improved if this is anticipated. The code attempts to model
r, with a linear function obtained using a weighted least squares fit to past values
of 7. Thenhnt1 is selected by replacing In E,, within E, + #,,,1for purposes of
stepsize selection, where 7, ,is what the linecar mode] predicts for 7n+1when it is
computed on the next step. Thus hy4; =k, X €~ (MFndl47ni3)/16

If the observation for ry is weighted by w("~*)/2 and observations are assumed to
have been processed forever, one obtains a simple algorithm for obtaining a solution
to the fitting problem.(Thecode uses w = 1/2. ) Assuming the model for 7« is
given by a+ b(k-n+1), we only need to solve for a. The normal equations defining
the values of a and b have the form

ZIC:C;O wk ET‘:O "(k + ])wk [ a ] — Erio Tn—k Wk (7)
o0 . oo . bl oo
Yoreo —(k+ Dwh 307 (k4 D)2k - Yoreo — k4 Dy gk

which can be written

1 Q-w?w-1][a] _[é&
a:ﬂm w+1_[b]~[,,,,} ®

where§,, = W x &, - 1 -t ryaud g, = wy,, _ 1 —&,.. And thus

2 1—w

[{n 4 i‘;—w 7lln (9)

1l —w
a =
W

As written above, getting « only requires 3 multiplies and 3 adds since w is a
constant. The code actualy uses something dlightly more complicated. If +,, > 0,
&, if is not allowed to be bigger than max(2+§,-1, 4), and otherwise is not allowed
to be smaller than min(2* <,,-1, —4). The effect of the last of these conditions
is that the stepsize canincreasce by a factor of at most 1.284 . . . if things are just
starting to look easier, and if things keep looking sufliciently easier this factor of
allowed increase is squared on succeeding, steps.



Unfortunately, there is more. Initial values must be assigned to € and 17, adjust-
ments made when a step is rejected, and overly optimistic increases in h must be
protected against. (Unlike some codes however, there is no restrictions on how big
anincreasc in kis allowed, as long as a pat tern of long terim increases is established. )
The following summarizes the det ails.

(1) When starting set » = =2 and p = —2. At the end of the first step, set v to
— 1, and at the end of the second st ep set it to 0. The use of p is described
below; thelarger y¢,themor e conservative the choice of h. Also set ( = -32.
The new stepsize by, 41 must satisfy In(h,4,/hn) < —¢/16. The only time ¢
is likely toinfluence stepsize selection is when the program thinks there is a
chance the stepsize should be restricted due to stability concerns, or just after
a step is rejected, aud thus further discussion of ¢ is postponed to the following
section.

(2) Whennu is <0, 75,41 is set to O. There is not enough information on how to
bias the choice of stepsize.

(3) When nu is -1 (the second step), set & = ro/(1-w) and 12 = —7r2/(1 - w)?.
These are the values these quantitics would have if the current values had been
the values for ininfinite number of past steps.

(4) When a dep is rejected, set s£1=5 (he conservative for a bit), reduce both &
and nby a factor of .001 (lower the weight on the past, the present appears
different), and set InEy 1= F, —in E, — £ (adjustment for the change being
made in h).

(5) When 1< O the code is less conservative in choosing hy41. In this case 741 =
max(a,—f — In E,, + ). Note that h,.41| will be larger the smaller, i.e. more
negative, 75,41. Then g IS replaced withmin(— 5, 7, + £ + In E,)). Thus when
E, is smadler, this will make ;1 smaller, aud this makes it more likely a will
be used in place of something bigger than a in the future. If there has been
no pattern of things getting easer to integrate, 4 = —5 which means |h| can
be boosted by at most ¢®/'¢ = 1.03 . . . over the h that results from using the
common simple model mentioned earlier.

(6) When yt >0, 7,41 is set to max(r,,, ¢) aud g is replaced with g — 3. This case
happens only for brief periods after a step has been rejected.

7. CHECKING FOR STIFFNESS

One ordinarily expects Fs < Fs3)(in Section 5) since the fifth order error estimate
is typically quite a bit more accurate than is the third order error estimate. If
this condition is consistently violated, there is areasonable chance the system is
stiff. (This can aso probably occur when the accuracy requested is unreasonable
given the precision with which the derivatives are computed. The code protects
against, this, but unlike DIVA,only whenthe derivatives are computed to nearly
the full precision of the arithmetic used. ) This condition is used as a filter to
restrict stepsize increases and to decide on whether to do a more expensive check
for stiffness. The test has been tuned to work reasonably well on y' = --y and thus
will probably not do quite as well a restricting the stepsize on other stiff problems.
(It should however do betterthan codes which make no effort to detect stiffness or
to restrict the stepsize when such appears likely.)
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Recall, that thestepsize is always restricted so In(hy, g1 /hn) < —¢/16.1n order
to get smoot het select ion of t he stepsize when stability it is limited by stability
concerns, the code updates ( from its initia value of —32 as follows.

(1) I1f Es<Es, subtract 6fi om (.

(2) When E; > Es, (- (.00475 — F/K5)/(.0019 + E3/E5)-(S(‘(' whatl mean
by tuning?) Perhaps the kind of thing done here might be improved with a
judicious choice of the formulas for Ezand Es without losing any important
characteristics of these formulas?

(3) If a step is regjected, ¢ is set to 3.2.

If a high percentage of recent steps have F5> s, there is a reasonable chance
that stiffness is limiting h, and that a diagnostic should be given. The following
algorithm is used.

(1) Let be the current step number, & be the step number the last time Es > E3
was observed (& = O initially), and o be a variable set to — 12 initially.

(2) When Es > E3, assign new values to o and & as follows: o = .8 %o + k and
k= k. If 0 >3.3615x — 5.2544, theno is set to —1.1 x 1030 to flag that an
additional check is desiied at the end of the step.

(3) At the end of the step if o <-1.01 x 10%, the ratio s = h?||6£]]2/|18y]}? is
formed. If s > 9, a diagnostic is given and o is set to — 10° which has the
effect of delaying another diagnostic of this type for a large number of steps.
If s<9, 0issettoO, and if E;> F3 continues to be satisfied frequently, the
check that requires computing s. will be repeated.

The coefficients for updating o are such that if o isvery close to O, then 5 successive
steps with Fs > E3 are just. barely suflicient to trigger the additional check.

8. THE USER INTERFACE
The user interface is designed with the following goas in mind

@ It should be simple to use for simple usc.

(2) It should support a wide range of functionality.

(3) It should be possible to add new features without any changes being required
in the usage for codes using earlier versions. This was aso a goal when DIVA
was written in the early 1970's, and has proven to be a very good idea.

(4) 1t should be possible to use a very similar interface for a multistep method 1I'm
planning to write inthe future. (This code would include provision for stiff,
differential-algebraic, and delay equations, [Krogh 1992]).

(5) It should be possible to use some of the features with no rea need to be aware
of the others. Hypertext documentation would make it possible to move closer
to this goal.

(6) As much as is reasonable, user’s not interested in a feature should not pay a
cost for features they are not using.

The calling sequence has the form
CALL DXRKS(TS, Y. OPT, ID AT, DAT, WORK)



where all a1 guments a1 ¢ arrays. TS containst. i, and 74, the finaltime, which must
be specified, and Y contains the current value of y. OPT can consist of asingle O.,
in which case the int egrations is done from TS(l ) to TS(3) using a default mixed
absolute/relative error test with a tolerance of € °, where ¢ is the smallest number
for which 1+ ¢ + 1.

IDAT is used to communicate status information to/from the user, contains di-
mension information about various arrays onthe first call, and is used to store
internal state. DAT and WORK are arrays used for internal floating point num-
bers. If caling the integrator to do separate int egrat ions and one quits at the proper
time, WORK need not besaved in order to continue the current integration.

For most usc, OPT.the option vector is needed to specify the usc of optional
features. We have been using option vectors of various flavors for 25 years, and
have found them useful for offering a wide variety of options without undue effect
on code efficiency while allowing for new features without impacting past usage.
This array containsarguments hat appear in groups. A group (starting in location
1 or just after the previous group) consists of an option index identify ing the option,
followed by a arguments that depend on the option index. The last option must be
0., which serves to flag the end of the options.

| am convinced that a code should do all it canto encourage the user to think
of the equations as belonging to different groups. For simple problems there is
just one group, and the user need say nothing special. Thus by using options one
can specify equation group boundaries. Certain options can be specified that will
apply starting with the start of the current group, until this option is changed
for some other group of equations. Examples are error control (6 types, including
none), diagnostic output to be printed or not, attempt to maintain extra precision
for some variables, turn off obtaining interpolated values (when interpolating) or
turn back on. DIVA does not have this later capability and a user integrating
some 40,000 equations with al interest ininterpolating only three of them could
have used it. The arguments for making it easy to group equations are even more
compelling when a code is designed to handle stiff equatious.

Both DIVA and DXRKS alow for the possibility that there may be severa G-
Stops of different types and multiple requests for output at specific values of ¢.1
find it interesting that when output comes it has a tendency to come in bunches,
and thus a higher probability than might be expected for lots of the above to occur
in asinglestep. I have alwaysfound it a bit challenging to insure that this output is
provided to the user in the correct order. This is an argument for making control of
this output an intrinsic part of the code, rather than assuming that simply allowing
the user to specify the next place where output is desired andassuming they can
deal with complications in thetricky cases.

Since the G-Stops bring in a bit of extra code, a separate subroutine is used
for this function. If this option is requested, the user will get flags from time to
time letting him know that g's need to be computed and this subroutine called.
Relatively little code is needed inthe main integrator to support this feature.

If reverse communication is not used, derivatives (and G-Stops) are computed
in a user coded routine, DXRK8F, and when an output point is reached, the user
coded routine DXRKS8O is caled. One can usc forward communication for one and
reverse for the other if desired. We have used fixed names primarily to avoid the

)
75



10

mist ake users sometimes make of forgetting tile external stat eent that is required
when names are passed. 1t also makes the call a little more compact. We believe
the extra flexibility of using arbitrary names does not buy much, when one can use
different file namesfor different routines if desired, and if integrating many different
cases in one routine, a case statementin a single routine is probably the cleanest
way to do things.

9. TEST RESULTS

At the end of this paper are figures giving results for a number of Runge-Kutta
codes aud for DIVA. These results were obtained on a 133M Hz Pentium (I EEE
64 bit arithmetic) with the Lahey F77] compiler. The test problems are those
suggested in [Krogh 1973], where reasons for using these particular test cases are
given. Since some of these test problems have also been used in the development of
the codes 1 have written, the result undoubtedly have a dight biasin favor of my
codes. (I, of course, do believe it is dlight. )

References for the methods used in the various codes are: for DOP853 (and for
the formulas used in DXRKS8),[Hairer et a. 1993]; for RKSUITE, [Brankin et al.
1991] and [Kraut 1991] (these being cited with the documentation that comes with
the code downloaded from netlib); and for DIVA, [Krogh 1974] and [Krogh 1994].
The test program allows for interpolation to output points when it is available, or
integrating to an output point and then continuing from that point. The number
of output points is not large, the following table summarizes where the codes arc
required to give results. (K = 1.86264. ..)

Cases Points
1,2,3,710, 30, 50
4,5, 8 271, 67,167
9 27r, 47r, . .. 167
6 K, 21[, . ..28K
10 6.192169 . . .

11 0,1

In connection with the results, 1 wouldlike to note the following.

The overhead is computed by dividing the total CPU time (which is repeatable to
amost threc figures) by the number of function evaluations. As would he expected,
DIVA stands out in having muchmore overhead than the other codes. On some of
the test problems, errors are computed at the end of every step, and since DIVA
takes smaller steps, this works against DIVA dlightly, but | suspect this bias is too
small to measure. Surprisingly, even on these simple test problems, DIVA take less
total time than some Runge-Kutta methods on some problems, particularly at high
accuracy. The codesin RKSUITE have surprisingly large overheads relative to the
other Runge-Kutta codes. | was surprised that support for reverse communication
and keeping all information on the state of the integration in arrays passed to
DXRKS did not have anoticeable iinpact on its overhead. Finally it should be noted
that evenin the most expensive case, the overhead for 10,000 function evaluations
which is areasonably long integration, amounts to less than a second.

The distance onthe abscissa from amajor tick mark to the minor tick mark on it's
right represents a factor of two in performance.
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DOP853 wit h interpolation requires about 26% more function evaluations than
without, as expected. It aiso has slightly more overhead per funct ion evaluation
when interpolating. Other than this, DOP853 and DXRKS8 are almost indistin-
guishable.

There appears tobe little reason touse the low order codes in RKSUITE since they
are not noticeably more efficient at low accuracies are a lot less efficient at high
accuracies, and carry higher overhead perfunction evaluation.

The 7-8 pair in RKSUITE is slightly bet ter on the linear problems which usc a
nearly constantstepsize than DOP853 and DXRKS. This appears to be due to the
formulas rather than implementations of the methods. The reverse situation ap-
pears to be true for problem 8. Note that this code does not allow for interpolation.
Except for problem 4, DIVA integrates al sccond order equations without breaking
them upinto first order systeins.

For problems 9-11, results for DIVA could be improved by almost a factor of 2 by
skipping the 2nd derivative evaluation of the step based on the results in [Krogh
1976].

Error tolerances were adjusted by afactor so that the globa errors on problem 3
were nearly equal for the differ-cut mcthods. (Error proportionality seemed to be a
bit more uniform on this problem than on the others. This factor was then used
for all problemns.

The Runge-Kutta methods can get better accuracy thanthe Adams code.

Runge-Kutta methods are somewhat boring:-)
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