
.
,’,

A d v a n c e d s i m u l a t i o n E n v i r o n m e n t f o r A u t o n o m o u s S p a c e c r a f t

Jeffrey J. Biesiadecki Abhinandan Jain Mark L. J a m e s
Jet l ’repulsion Laboratory/California Ixlstitute of ‘Techtlology

4800 Oak Grove Drive lv1/S 198-235, Pasadena, CA 91109 USA

A B S T R A C T
NASA is developing technology to increase space-
craft on-board autonomy, in an eflort to reduce over-
all mission cost and mission operations resources.
Achievement of this objective requires the devel-
opment of a new class of ground-based autonomy
testbeds that can enable rapid development, test, and
integration of the new autonomous spacecraft flight
software. This paper describes the development of the
Autonomy Test bed Environment (A TBE), designed
to address these needs.

1 I N T R O D U C T I O N
The Autonomy Testbed Environment (ATBE) sup-
ports spacecraft simulation over a wide range of en-
gineering platforms, functio~Ial and fidelity models,
fault injection, test scenarios and duration. Conven-
tionally, such breadth of testbed functionality has
been met by the expensive and time-consuming de-
velopment of multiple specialized testbeds. In con-
trast, the ATBE testbed has been designed to be
reconfigurable to meet the development and test
needs of many different kinds of users. ATBE’s de-
sign enables easier maintainability aud usability, and
perhaps most significantly, continual evolutionary
changes in mode] requirements, functionality, and fi-
delity. Additionally, ATBE provides a high degree
of visibility into model state variables, extendable in-
terfaces to data monitoring and plotting tools, and
simulation checkpointing.

The AT13E toolkit includes LIBSIM, which uses a
data flow’ paradigm for connecting higher-level device
and subsystem models, and provides special features
for modelitlg faults. (Examples of LIBSIM models in-
clude bus interfaces, device electronics, and valves.)
It also includes DSIIELL, a high fidelity real-time dy -
xlamics silnulation package \vith models for the vari-
ous act uators and sensors on a spacecraft. This pa-
per describes these tools in detail in sections 2 and 3.
See reference [I] for a broad overview of .ATBE.

ATBE models are roughly categorized m real-
time, containing functions that are executed every
tick of the simulation, and non-real-time, which do
work in response to events or commands. Currently
all real-time models execute in the same thread.
Event-dri\’en models run as separate processes and
typically communicate via messages. L[EJS I M and
DSIIEI,I models are real-time models. .+11 exal[lple
of an event-driven model is a scene getwrator which
is used to simulate an on-boarcl camera. This model
does its work in response to a ‘(take picture” com-

mand from the flight software and may take several
Ininutes to create an image. Models are implemented
as non-real-time due to the nature of the device they
simulate, or to ensure that critical real-time perfor-
mance requirements of the simulator are met. Fig-
ure 1 shows an example of the kinds of models that
are included in an ATBE simulation.

The data flow simulator LIBSIM is the highest
layer of the ATBE simulator. It contains a model
that wraps DA RTS/DSIIELI, (figure 2), issuing com-
mands to DStIELL hardware models based on its
inputs and setting its outputs based on those re-
ceived from DSH F,LL models. Event-driven models
each have corresponding simple LIBSIM models that
send and receive messages to and from the non-real-
time processes, to incorporate the data from these
processes into the real-time core.

l~:q;y~:Fl

L — . – l

●

Figure 1: Representative types of models in an
ATBE S/C simulation

2 LIflSIM D A T A F L O W S I M U L A T O R
LIFISIhl is a library to facilitate the development of
spacecraft subsystem and hardware models for a sinl-
ulator using a data flow paradigm [2]. It formalizes
~vhat constitutes a model, and provides frameworks
for both independent model development and the
cmlnection of multiple models in a simulator. It is
implemented in C ancl C++, has a C functional inter-
face, and runs on both Unix and VxtVorks pIatforms.

. . .

The free soft ware package Tool Command Language
(Tel) [3] is used for the command line ald script in-
terface.

A LIBSIM model consists of state variables, inputs
ancl outputs, an init function, and a tick function.
The init function calls LIBSIM functions to register
the model’s state/input/output variables and tick
function. The tick function is called repeatedly dur-
ing the simulation to set the values of outputs based
on the values of inputs and internal state variables.

\Vhen running in a multiple model sirnu]ator, the
out~nrts of one model may be hooked up to the in-
puts other models (figure 2). LIEtSIhf provides func-
tionality for specifying these connections and facili-
ties for advancing simulation time atld calling model
tick functions. Each input and output can be con-
nected to only one signal; but there is no limit to the
number of inputs and outputs that can be attached
to a signal. Signals are shared buffers, and inputs
and outputs are pointers to these buffers. So when
a model writes to its output, it is directly writing
to the inputs of any connected models without over-
head due to copying or message passing. Inputs and
outputs are also time stamped, so it is possible to de-
termine and specify when this data is “fresh”. The
order in which model tick functions are called is de-
termined from the dependencies implied by the data
flow. If desired, LIBSIM models can be wrapped and
connected using other packages such M Real-1’ime
Innovations, Inc.>s software ControlShell or Matlab’s
Simulink.

When running a stand-alone unit test for a par-
ticular model, the developer can set the value of the
inputs, take a step, and look at the values of the out-
puts. This can be done at the command line, or in a
script for automated/batch testing. The commands
giving visibility into the models are the same as for
the full-up simulator. In this mode, the user writes
a trivial maino function and links to the LIBSIM li-
brary to get an executable.

L, IBSIM is recontigurahle in the sense that model
instantiations and connections are specified in an in-
put file that is read at run time, and maybe modified
without recompiling arly code. Adclitionally, nlod-
els may be deactivated (mearling their tick functions
will not be called) and reactivated during run time.
This allows alternate implementations for a device,
perhaps one being an interface to actual hardware-
in-the-loop and another being a pure software simul-
ation. It also facilitates debugging.

Models can register state variables Tvith L[RS lhf.
By doing so, these variables will automatically have
a command line interface at run-time, allowing the
user to look at and modify their values. This pro-
vides a standard interface to the model and simplifies
debugging. State variables can he checkpointed, to
set the initial conditions for a future run. Types al-
lowed for state vat-iables are any basic C data type,
arrays, ancl C enumerations.

],I[]SI,M provides special support for modeling

faults, intended to help reduce coding for inlplcment-
iug simple fault states. The built-in faults are a
specialized form of integer euutneration states. All
fault variables nlay be in a “nominal” mode which is
mapped to an integer value of zero. The model de-
veloper adds other key~vords to a fault variable that
map to other, non-zero, values. Each one of these val-
ues should correspond to a mutually exclusive fault
condition. For example, a valve may have a fault
state that could be set to “nominal”, “stuckC1osed”,
or “stuckOpen”.

Faults may he triggered within the model’s tick
function if the model determines that some criteria
is violated. More commonly, however, faults are in-
jected by using a poke command or GIJI at run-time
by the user. Faults may also be fixed (i.e., set to
‘{nominal”) by the model in its tick function, as well
as through a run-time poke ccmnnand. Special sup-
port is given for the automatic correction of faults to
help reduce repetitive coding in models. Automatic
fault correction can occur if a time out expires for
the fault, if the mode] receives a soft reset, and if
the model is power cycled. All of these capabilities
are optional, and may be controlled at the cornrnand
line.

Other features of LIUSIM include a scheduler to
perform tasks at either a specific time or every simu-
lation step, logging routines with verbosity selectable
on a per model basis, a global database to associate
names with pointers and organize global variables,
and an extensive set of commands available to make
inquiries about the simulation and models. These
commands are useful for wrriting scripts and graphic-
al user interfaces, debugging, and monitoring.

3 llSHELL D Y N A M I C S S I M U L A T O R
DAFLTS Shell (DSIIE;LL) is a multi-mission spacecraft
simulator for development, test and verification of
flight software and hardware. 11s}[ELI, is portable
from desktop workstations to real-time, hardware-
in-the-loop simulation environments. DSIIELIJ inte-
grates the DARTS flexible multi-body dynamics conl-
putational engine and libraries of hardware models
(for actuators, sensors and motors) into a sinlula-
tion environmerlt that can be easily configured and
interfaced with flight soft~vare and hardware for vari-
ous real-time and non real-time spacecraft simulation
needs.

The main goals of the ~SIIELL environment are:
to significantly reduce the software development re-
quired to interface dynamics simulators, actuator
and sensor hard~vare models and hardware-in-the-
loop devices; to elinlillate the need for separate inter-
face development efforts across the various testbeds
(analysis, software and real-time) }vithirl a project,
and allow easy rnigratio~l of models between testbeds;
to allow the easy support of a variety of S/C configu-
rations and models and simulation environments for
all the phases of the mission; and to pertnit the e~sy
reuse and customization of hardware models across
various missions.

.,,

I
L DL.. V41}Fw’-p&T0DS ~lr.. mi,~> u>

~

----iJE%WIT-C3*-- 1,,,
~dj Su ,ToP&

“.1 p*

PIo DDrv E1ectronlc,

Figrrre2: Exatnpleof LIBSIM models

DSHELL k a library implemented in C++ may
be exnbecfded in another simulator as described in
secticm 1. Or, a small “rnaino’” routine can be writ-
ten to send data between flight software and DSRELL
models, andadvance simulation time. Formodelde-
velopment, a generic “open-lc)op” version of maino
is available in which the user controls time and data
to and from models. This is invaluable for writing
batch scripts to do regression testing.

Simulation time is tracked from the start of sinlu-
latiorl. An 1/0 step consists of an integer number of
integration steps. DARTS dynamics are computed
each integration step. Input and output to and from
DSFII?LL models is expectecl to occur each 1/0 step.

3.1 DARTS – Dynamics Algorithms for Real-
Time Simulation

The DARTS dynamics compute engine [4] implements
a fast and etlicient spatial algebra recursive algo-
rithm [5,6] for solving the dynamics of flexible, rnulti-
body, tree-topology systems. It is very general, and
is also in use for non-spacecraft applications such as
molecular dynamics [7]. DARTS is a library inlple-
mented in ANSI C available for Unix and Vx\Vorks
platforms.

An analyst provides a text input file that is read at
run time and specifies the bodies that make up the
spacecraft: their masses, inertial and flexibility prop-
erties, M well m the types of hinges that bind them
together. .i hinge connects two bodies, and there are
many types available (such as pin, U-joirlt, gimbal,
translational, and others). Bodies may be connected
in a tree topology, with each body havi~lg a single
~)arent body, and the root of the tree being referred
to as the base body. The locations of named nodes
where forces may be applied or dynamics properties
should be computed are also specified in a DARTS in-
put file. Because the above data is not hard-coded,
dynamics models can be easily constructed for dif-
ferent missions, and models can be changed without
necessitating the recompilation of source cocle.

3.2 DSiIELL Model Classes
DSR ELL provides C++ base classes for hardware de-
vice modek. Actuators can impart a force on a
node of a body, such as a thruster. Sensors are at-
tached to a node of a body ant] make use of dynamics

viewed \vith ControlShell’s Data Flow Editor

calculations prodrrcecl by DARTS for that node. Ex-
amples of sensor models include star trackers and
gyroscopes. Motors are attached to hinges and are
used to articulate the bodies that the hinge connects.
Encoders are also attached to hinges, and are to
motors what sensors are to actuators. DSRELL device
models are massless, and other than applying a force
or articulating a body, do not affect the dynamics of
the spacecraft. All four of these classes are derived
from a common base clam (Model), which defines
data and methods associated with each model.

Data for Ds~irmL models consists of parameters,
discrete states, continuous states, commands, and
outputs. Parameters are values that are set while
reading a configuration script upon startup, but are
not changeable by the model itself. Discrete states
are initialized at startup, and may be modified by
both the model and the user during run time. Con-
tinuous states are updated by the numerical in-
tegrator in DARTS, and require the model builder
to provide a method for coxnputing the derivatives
of these states. Commands are time tagged data
structures sent by flight software, and outputs are
ti!ne tagged clata structures sent to flight software.
Parameters, discrete states, commands and outputs
may be of any basic C data type (such as int or
dmdde), C enumeration, structure, or fixed-size ar-
ray. Structures may be nested, may contain arrays,
arrays of structures are permitted, and so on. Con-
tinuous states are either double or arrays of double.

There are various methocls available for a DSRELL
model to define its behavior. Pre- and post- 1/0
step methods are called at the beginning and end
of an 1/0 step, and are typically usecl for nlod-
els to retrieve commands from and sencl data to
flight software, respectively. Pre- ancl post- i n -
tegration step methocls are called at the begin-
ning and end of an integratioll step, and are typ-
ically used to compute discrete states. Each inte-
gration step, an integrator calls a function to comp-
ute the time derivative of the DARTS state vector.
This function also calls pre- arid post- derivative
met hock for each DSR ~r,r, model immediately before
and after computation of DARTS derivatives. The
pre-derivative method is typically used for actuators

to apply forces to the nodes they are attached to.
The post-derivative method is typically used to conl-
pute the time derivative of any contilLuous states the
model may have. The number of times these deriva-
tivernethods are actually called perintegratiou step
depends on the numerical integration algorithm se-
lected. Note that unlike LIHSIM, DS}I~LLmocfekdo
not interact with each other directly, so the relative
order in which their methods are executed does not
matter (figure 3).

The base classes provide several methods useful
to a model, including methods to get the sin~ula-
tion time, step sizes, and D~~{~sillfor~llatioll. These
would be called from the model’s pre/post 1/0 step
and other methods described in the previous para-
graph.

.——

Actuators Sensors

DARTS Shell (Dshell)

>ata

)

Figure3: Typical data flow fora DSR~L1, sirnulatiorl

3.3 DSRELL Mode l L ib ra r i e s
Classes for actual device models are derived from any
of the four base classes described insectiorl 3.2. The
code for model classes maybegrouped into reusable
libraries, organized perhaps by mission, by vendor, or
bytype of device. There areseveral modelsa vailable
for thrusters, gyroscopes, star scat~~lers, acceleror1le-
ters, andother devices used on JPLs~Jacecraft. They
can be used as-is for quick prototype sinlulations, or
as a starting point for sinlilar models on a new space-
craft.

An automatic code generatoris available to sinl-
plify model development. The model developer
writes a text file that describes the model, listing
the types, names, and descriptions of the parame-
ters, states, commands, and outputs associated with
the model. .4 prototype graphical user interface is
available for generating this file. The code generator
takes this file as input, and generates aC++ header
file andstub source file forthemode]c lass. The de-
velopertheu fills in methods (pre/post 1/0 step and
the rest) as needed to define the moclel’s behavior.
Very little knowledge of C++ is needed, but it is
useful to be familiar with C.

The automatic code generator also makes an in-
terface class, specific to the model class the de-
veloper is defining (figure 4). The developer never
changes this code and does not need to even look at
it. This class provicles model-specific functions to is-
sue commands and retrieve outputs from a model,
code commonly needed to define a text interface
to the model’s data, and other methods needed by
DSHEXL. Thecommand andoutput functiomwould
typically becalled from thesimulatoro rrnaino rou-
tine that calls other DSH~LL routines. They are
lnodel-specific to keep them type-safe (avoiding the
use of void *pointers reduces theoccurrence of some
programming errors). This also allows a simpler in-
terface for commands and outputs of basic types, and
is faster than performing any kincl of marshaling or
conversion of structures. The code generated for the
interface class is meant to eliminate tedious coding
by a developer that is typically needed for a model.
It is generated in a class separate from the actual
model class to clearly delineate code the developer
should modify. This helps keep the code for the stub
model class small.

.

.:,](Mo(Ls1

[

! do,) !,,:M/tOr-) (Eni+

,

(Actuate;) Dshell base clasaes
I

model-specific Interface claaa
(W~w$l*CIF) automatically generated, developer does not modify
... . .

-1
pro v/ales test hrterface to model

model cless
(Mp-y;, “stub” code sutomstkslly generated._ developer fi//s /n methods to define mode/behavior

Figure 4: DSH ~LL class hierarchy

3.4 DSRELL Run Time Environment

The input file containing DART’S information may
also contain statements to instantiate models, speci-
fying the model class and instance name. States and
parameters for a model may be initialized here as
\vell. Again, not hard-coding this information makes
it easier to change cc)ntigurations without reconlpil-
ing code.

Like LIELSIh(, DSH~LL also has an extensive set of
Tcl commands which can be used to get information
about the simulation and models therein. In par-
ticular, the values of moclel states and parameters
can be peeked a~ld poked froln the command line,
commands to models can be issued as if they came
from flight software, and outputs from models can
be examined. There are enough commands available
to query which models are instantiated and the data
types and descriptions of mode] states that a graph-
ical user interface to display state data can dynam-
ically create itself, so a programmer does not need
to change C,[JI code if the simulation configuration
changes or ne}v models are added. A prototype of
such a C.UI has been implemented using Tk,

.

D.ARTS and DSHM,L model state variables can
checkpointed to a text file containing “poke” conl-
rnancts. This file can be edited by the user if neces-
sary without needing to know any syntax other than
the already familiar Tclcommauds. On a subsequent
run, this file can be used to initialize states and re-
sume a previous run.

DSHELL can also keep track of multiple S/C dy-
namics models. Alternate dynamics models of the
same spacecraft can be selected from (such as in-
cruise versus in-orbit models with different fuel slosh
behavior, or pre- versus post- probe release). Only
one such alternate dynamics model may be active at
any given time, and Dstl~LL device models implic-
itly interface only to the active model. Or, multiple
spacecraft can be bookkept, as in the New Millen-
nium Program’s Deep Space Flight 3 formation fly-
ing nlission. Any combination of alternate models of
multiple spacecraft is allowed.

As with LIBSIM and DARTS models, DSHELL mod-
els can be deactivated from the Tcl command line or
startup file. This is useful for debugging, or if there
are alternate models for the same spacecraft device
(perhaps one would interface to actual hardware-in-
tbe-loop).

It is also possible to schedule C functions and Tcl
scripts at run time for either one-time or repeated
execution. This is very handy for debugging and
monitoring variables. It is also useful for interfac-
ing DSHELL to other tools. Such interfaces have
been created to Real-Titne Innovation, Inc.’s data
monitoring tool Stethoscope and to JPL’s 3D viewer
Duiew. Interfaces to other tools can be created in a
similar manner, without having to change Ds~{~LL
code. Aside from keeping DSH!WL code smaller and
cleaner, it makes it easy to mix and match inter-
faces among testbeds which use different monitoring
tools.

4 C O N C L U S 1 O N

An adaptable spacecraft simulation testbed is essen-
tial for the design, development, testing and inte-
gration of autonomy flight software and hardware.
The testbed needs to support simulations ivith a wide
range of capabilities. This paper describes the recon-
figurable .ATBE simulation environment ancl tools
that comprise it.

Both LIRSIM and DSIIELL use the same core code
for providing a text interface to their moclels, which
is why the capabilities for giving visibility into the
model data are silnilar. The main differences be-
tween the tools are in the 7nethods associated with
models, and when they are called. L[EKS l~! provides a
mechanism for models to share data with each other,
while Dstl ~LL provides rnetbods to interface with the
dynamics integrator at the appropriate times.

Many models needed for simulation neither pro-
vide nor require dyrlamics information, but do de-
pend on and should affect the states of other models.
Adding inter-model communication and sorting to
DS [[~l,L was considered, but tile data flow becomes

messy because DSHKLL models have more than one
method executed per time step. A model could con-
ceivably try to use an input value in its pre 1/0 step
method, for instance, but the upstream model pro-
ducing the value not do so until its post 1/0 step
method is called. There did not appear to be an easy
way to sl)ecify or detect such a case. Additionally it
is not clear when to do the dynamics integration in a
time step. So LIBSIM was designed to allow a model
one “tick” function per time step.

The tools can be used together when a developer
writes a I, IBS1hf model that wraps DSHELL. The
“tick” function of this wrapper model calls DSHELL

functions to issue commancls to DSHELL models, ad-
vance DSHELL’S notion of time, and retrieve outputs
from DSHRLL models. For example, the “Dynamic-
sSinlulator” components shown in figure 2 is such a
wrapper. The “PropDrvElectronics” model receives
thruster commands from flight software via a bus,
but if it is powered off by the “PwrDistrUnit” or is
in a fault state, it will not pass these commands on to
“IJynamicsSimulator” which contains thruster mod-
els that do the actual work of applying forces. Expe-
rience with New Millennium Deep Space 1 has shown
that moving fault injection and other functionality
that had traditionally been in DSHELL models to
LIBSIM has kept the DSHELL models simpler and fo-
cussed on the tasks for which they are intended.

Future work will include further blending of these
tools, in part by implementing an automatic DSHELL

wrapper model, so a developer does not need to write
the code described in the previcms paragraph. Addi-
tionally, we are looking into how ATBE’s architec-
ture and toolkit can be enhanced to provide thermal,
power, and fuel consumption nlodeling. The ability
to use these tools either independently or in various
combinations with one another has been valuable and
will be retained.

ATBE tools have been used on many JPL flight
projects, and are continually evolving based on ex-
perience with these projects. DARTS is used by the
Cassirli project development, test, and integration
teams. DSIIELL is used by Galileo, Nlars Pathfinder,
and in the Flight System Testbed on rnauy new
projects including Stardust. LIBSIM is in use by the
New hlillenniurn Program’s Deep Space Flight 1. De-
velopment of Cassini High Speed Simulator is near-
ing completion and will be used during Cassi~li nlis-
sion operations to test command sequences prior to
uplink; this simulator uses ATBF, tools as well.

5 A C K N O W L E D G E M E N T S

The authors would like to express their thanks for the
work performed by the other ATBE team members:
David Breda, Kirk Fleming, Martin Gilbert, David
Henriquez, Linh Phan, Ling Su, and Matt W’ette.

The research described in this paper was per-
formed at the Jet Propulsion Labcmatory, California
Institute of Technology, under contract with the Na-
tiotlal Aeronautics and Space Adnlinistration.

. .

R E F E R E N C E S
[1]

[2]

[3]

[4]

[5]

[6]

[7]

J . Biesiadecki, A . Jain, “ A Reconfigurable
Testbed Environment for Spacecraft Autonomy,”
in Simulators for European Space Programmed,
4th Workshop, (Noordwijk, The Netherlands),
Oct. 1996.

J. Biesiadecki, “LIBSIM Simulator Model Devel-
opment Library,” Jet Propulsion Laboratory, in-
ternal document, (Pasadena, CA), Nov. 1996.

J. Ousterhout, “Tc1 and the Tk Toolkit,”
Addison- Wesley Publishing Company, 1994.

A. Jain and G. Man, “Real-Time Simulation of
the Cassini Spacecraft Using DARTS: Functional
Capabilities and the Spatial Algebra Algorithm,”
in 5th Annual Conference on Aerospace Compu-
tational Control, Aug. 1992.

G. Rodriguez, K. Kreutz-Delgado, and A. Jain,
“A Spatial Operator Algebra for Manipulator
Llodeling and Control,” The International Jour-
nal of Robotics Research, vol. 10, pp. 371–381,
Aug. 1991.

A . Jain, “Unified Formulation of Dynamics
for Serial Rigid Multibody Systems,” Journal
of Guidance, Control and Dynamics, vol. 14,
PP. 531-542, May-June 1991.

A. Jain, N. Vaidehi, G. Rodriguez, “A l%t
Recursive Algorithm for Molecular Dynamics
Simulation,” Journal of Computational Physics,
vol. 106, no. 2, pp. 258-268, June 1993.

.

Advanced Simulation Environment for Autonomous Spacecraft

Jeffrey J. Biesiadecki Abhinandan Jain Mark L. James
Jet Propulsion Lal>oratory/California Institute of Technology

4800 Oak Grove Drive M/S 198-235, Pasaclena, CA 91109 USA

A B S T R A C T
NASA is developing technology to increase space-
craft on-board autonomy, in an effort to reduce oucr-
all mission cost and mission operations resources.
Achievement of this objective requires the devel-
opment of a new class of ground-based autonomy
testbeds that can enable rapid development, test, and
integration of the new autonomous spacecraft flight
software. This paper describes the development of the
Autonomy Testbed Environment (A TBE), designed
to address these needs.

1 I N T R O D U C T I O N
The Autonomy Testtmd Environment (ATBE) sup-
ports spacecraft simulation over a wide range of en-
gineering platforms, func~ional and fidelity models,
fault injection, test scenarios and duration. Conven-
tionally, such breadth of testbcd functionality has
been met by the exj)ensive and time-consuming de-
velopment of multiple specialized testbeds. In con-
trast, the AT13E testbed has been designed to be
reconfigurable to meet the development and test
needs of many different kinds of users. ATIIE’s de-
sign enables easier maintainability and usability, and
perhaps most significantly, continual evolutionary
changes in model requirements, functionality, and fi-
delity. Additionally, ATBE provides a high degree
of visibility into model state variables, extendable in-
terfaces to data monitoring and plotting tools, and
simulation checkpointing.

The AT13E toolkit includes LIDSIM) which uses a
data flow paradigm for connecting higher-level device
and subsystem models, and provides special features
for modeling faults. (Exalnples of LIHS1\l models in-
clude bus interfaces, device electronics, and valves.)
It also includes DSHELL, a high fidelity real-time dy-
namics simulation package with mo(iels for the vari-
ous act uators and sensors on a spacecraft. This lJa-
per describes these tools in detail in sections 2 and 3.
See reference [I] for a broaci overview of .$TBE.

.ATBE models are roughly categorizeci as reai-
time, containing functions that are executeci every
tick of the simulation, and non-real-time, which do
\vork in response to events or commands. Currently
ali reai-tirne models execute in the same thread.
Event-driven models run as separate processes and
typically communicate via messages. LIBS [M and
DSN~LL models are real-time models. .-in exampie
of an event-ciriven model is a scene generator which
is useci to simulate an on-boar[i tamer a. This model
dots its work in response to a “take picture” com-

rnarlri from the flight software and may take several
Ininutes to create all iulage. hlociels are implemented
a.s notl-real-tirne ciue to the nature of the device they
simulate, or to ensure that critical real-time perfor-
!uance requirements of the simuiator are met. Fig-
ure 1 shows an example of the kinds of models that
are iucludeci in an ATBE sirnuiatiorl.

The data flow simulator 1,1 ~SI M is the highest
layer of the ATBE simulator. It contains a model
that wraps DAIYM/DSH~LL (figure 2), issuing com-
mands to DSHELL hardware lnodels based on its
inputs and setting its outputs based on those re-
ceived from DSH~LL models. Event-driven models
each have corresponding simple LIEWIM models that
se[ld and receive messages to a~ld from the non-real-
time processes, to incorporate the data from these
processes into the real-time core.

A

hhd!

.

p5+pJ
Figure 1: Representative
A1’BE S/C simulation

A

●

types of models in an

2 LIflSIM D A T A F L O W S I M U L A T O R
LrHSIM is a library to facilitate ttle development of
sr)acecraft subsystem and hardware models for a sinl-
ulator using a data flo}v paradig[n [2]. It formalizes
what constitutes a model, and provides frameworks
for both inciepencieut mociel cievelopment and the
connection of multiple modek in a simulator. It is
i!nplementeci in C and C++, has a C functional i~lter-
face, anti runs on both [Jnix atlci VxWorks platforms.

The free software package Tool Command Language
(Tc/) [3] is used for the command line and script in-
terface.

A I, IELSIM model consists of state variables, inputs
and outputs, an init function, and a tick function.
The init function calls LIr3s Ihl functions to register
the model’s state/input/output variables and tick
function. The tick function is called repeatedly clur-
ing the simulation to set the values of outputs based
on the values of inputs and internal state variables.

When running in a multiple model simulator, the
outputs of one model may be hooked up to the in-
puts other models (figure 2). LIHSIM provides func-
tionality for specifying these connections and facili-
ties for advancing simulation time and calling model
tick functions. Each input and output can be con-
nected to only one signal; but there is no limit to the
number of inputs and outputs that can be attached
to a signal. Signals are shared buffers, and inputs
and outputs are pointers to these buffers. So when
a model writes to its output, it is directly writing
to the inputs of any connected models without over-
heacl due to copying or message pawing. Inputs and
outputs are also time stamped, so it is possible to de-
termine and specify when this data is “fresh”. The
order in which model tick functions are called is de-
termined from the dependencies implied by the data
flow. If desired, LIEISIM models can be wrapped and
connected using other packages such as Real-Time
Inncwat ions, Inc.’s software Controlshell or Matlab’s
Simulink.

When running a stand-alone unit test for a par-
ticular model, the developer can set the value of the
inputs, take a step, and look at the values of the out-
puts. This can be done at the command line, or in a
script for automated/batch testing. The commands
giving visibility into the models are the same as for
the full-up simulator. In this mode, the user writes
a trivial main{) function and links to the LIErslh[li-
brary to get an executable.

LI~SIM is reconfigurable in the sense that model
instantiations and connections are specified in an in-
put file that is read at run tilne, and may be modified
without recompiling any code. Additionally, n~ocl-
els may be deactivated (meaning their tick functions
will not be called) and reactivated during run time.
This allows alternate implementations for a device,
perhaps one being an interface to actual hardware-
in-the-loop and another being a pure software sinlu-
lation. It also facilitates debugging.

Models can register state variables with LIRSIM.
By doing so, these variables will autoruatically have
a command line interface at run-time, allowing the
user to look at and modify their values. This pro-
vides a standard interface to the model and simplifies
debugging. State variables can be checkpoiuted, to
set the initial conditions for a future run. Types al-
lowed for state variables are
arrays, and C enumerations.

LIFrsIhf provides special

any basic C data type,

support for modeling

faults, intended to help reduce coding for inlp\ement-
i[lg simple fault states. ‘1’he built-in faults are a
specialized form of integer enumeration states. All
fault variables may be in a “nominal” mode which is
mapped to an integer value of zero. The model de-
veloper adcls other key$vords to a fault variable that
rrlap to other, non-zero, values. Each one of these val-
ues should correspond to a mutually exclusive fault
condition. For example, a valve may have a fault
state that could be set to “nominal”, “st uckClosed”,
or “stuckOpcn”.

Faults nlay be triggered within the model’s tick
function if the model determines that some criteria
is violated. More commonly, however, faults are in-
jected by using a poke cornrnarlcl or GUI at run-time
by the user. Faults may also be fixed (i.e., set to
“nominal”) by the model in its tick function, as well
as through a run-time poke command. Special sup-
port is given for the automatic correction of faults to
help reduce repetitive coding in models. Automatic
fault correction can occur if a time out expires for
the fault, if the model receives a soft reset, and if
the model is power cycled. All of these capabilities
are optional, and may be controlled at the command
line.

Other features of LINIM include a scheduler to
perform tasks at either a specific time or every sinlu-
latiou step, logging routines with verbosity selectable
on a per model basis, a global database to associate
names with pointers and organize global variables,
and an extensive set of commands available to make
inquiries about the simulation and models. These
commands are useful for writing scripts and graphi-
cal user interfaces, debugging, and monitoring.

3 ~SHELL D Y N A M I C S S I M U L A T O R
DAR’rS Shell (DSHM,L) is a multi-rnission spacecraft
simulator for development, test and verification of
flight soft ware and hardware. DSH ~:LL is portable
from desktop workstations to real-time, hardware-
in-the-loop simulation environments. DSH~LL inte-
grates the L>.~aTs flexible multi-body dynamics conl-
putational engine and libraries of hardware models
(for actuators, sensors and motors) into a sinlula-
tion envirorlrnent that can be easily configured and
interfaced with flight soft~vare and hardware for vari-
cms real-tilne and non real-time spacecraft simulation
rweds.

The main goals of the DSHELL environment are:
to sig[lificant[y reduce the software development re-
quired to irlterface dynamics simulators, actuator
and sensor hardware models and hardware-in-the-
loop devices; to elinliuate the need for separate inter-
face de~relopment efforts across the various testbecls
(analysis, softkvare and real-time) within a project,
and allow easy migration of models between testbeds;
to allow the easy support of a variety of S/C configu-
ratiorls and models and simulation environments for
all the phases of the rnissiou; and to permit the easy
K!LISC and customization of hardware models across
various missions.

Figure 2: Example of LtLAtM models viewed with ControlShcll’s Data Flow Eclitor

DSE[HL[, is a library implemented in C++ may
be embedded in another simulator as described in
section 1. Or, a small “rnaino’” routine can be writ-
ten to send data between flight software and DSHF;LI,
models, and advance simulation time. For model de-
velopment, a generic “open-loop” version of maino
is available in which the user controls time and data
to and from models. This is invaluable for writing
batch scripts to do regression testing.

Simulation time is tracked from the start of simu-
lation. An 1/0 step consists of an integer number of
integration steps. DARTS dynamics are computed
each integration step. Input and output to and from
DSHELL models is expected to occur each 1/0 step.

3.1 DARTS – Dynamics Algorithms for Real-
Time Simulation

The DARTS dynamics compute engine [4] implements
a fast and efficient spatial algebra recursive alg~
rithm [5,6] for solving the dynamics of flexible, multi-
body, tree-topology systems. It is very general, and
is also in use for non-spacecraft applications such as
molecular dynamics [7]. DARTS is a library imple-
mented in ANSI C available for Unix and Vx\$rorks
platforms.

An analyst provides a text input file that is read at
run time and specifies the bodies that nlake up the
spacecraft: their masses, inertial and flexibility prop-
erties, M well .M the types of hinges that bincl them
together. A hinge connects two bodies, and there are
many types available (such as pin, [J-joint, girnt)al,
translational, and others). Bodies may be connected
in a tree topology, with eacl[body having a sirlgle
parent body, and the root of the tree being referred
to as the base body. The locations of named nodes
where forces may be applied or dynamics properties
should be computed are also specified in a DARTS in-
put file. Because the above data is riot hard-codeclj
dynamics models can be easily constructed for dif-
ferent missions, and models can be changed without
necessitating the recompilation of source cocle.

3.2 DSH~LI, Mode l C las ses
Dstt~LL provides C++ base classes for hardware de-
vice models. Actuators can impart a force on a
node of a body, such as a thruster. Sensors are at-
tached to a node of a body and make use of dynamics

calculations procluced by DARTS for that node. 13x-
arnples of sensor models include star trackers and
gyroscopes. Motors are attached to hinges and are
used to articulate the bodies that the hinge connects.
Encoders are also attached to hinges, and are to
motors what sensors are to actuators. DSHELL device
models are rnassless, and other than applying a force
or articulating a body, do not affect the dynamics of
the spacecraft. All four of these classes are derived
from a co~nmon base class (Model), which defines
data and methods associated with each model.

Data for Dstt~LL models ccmsists of parameters,
discrete states, continuous states, commands, and
outputs. Parameters are values that are set while
reading a configuration script upon startup, but are
riot changeable by the model itself. Discrete states
are initialized at startup, and may be modified by
both the model ancl tbe user during run time. Con-
tinuous states are updated by the numerical in-
tegrator in DARTS , and require the model builder
to provide a method for computing the derivatives
of these states. Commands are time tagged data
structures sent by flight software, and outputs are
time tagged data structures sent to flight software.
Parameters, discrete states, commands and outputs
may be of any basic C clata ty~)e (such as int or
double), C enumeration, structure, or fixed-size ar-
ray. Structures may be nested, may contain arrays,
arrays of structures are permitted, ancl so on. Con-
tirluous states are either double or arrays of double.

There are various methods available for a DSHELL
ruodel to define its behavior. Pre- and post- 1/0
step methods are callecl at the beginning and end
of an 1/0 step, and are typically used for nlod-
els to retrieve commands from and send data to
flight software, respectively. Pre- and post- in-
tegration step methods are called at the begin-
rling and end of an integration step, and are typ-
ically used to compute discrete states. F,ach inte-
gration step, an integrator calls a function to comp-
ute the time derivative of the DARTS state vector.
This function also calls pre- and post- derivative
rlwtbods for each Ds[[~I,t, model immediately before
and after computation of DARTS derivatives. The
~Jre-derivative rncthod is typically used for actuators

to apply forces to the nodes they are attached to.
The post-derivative method is typically used to com-
pute the time derivative of any continuous states the
model may have. The number of times these deriva-
tive methods are actually called per integration step
depends on the numerical integration algorithm se-
lected. Note that urllikeL[~SINf, Ds!t~LL models do
not interact with each other directly, so the relative
order in which their methods are executed does not
matter (figure 3).

The base classes provide several methods useful
to a model, including methods to get the simulat-
ion time, step sizes, and DARTS information. These
would be called from the model’s pre/post 1/0 step
and other methods described in the previous para-
graph.

—-.

Actuator
Commands

L
—

Actuators
_s3

DARTS Shell (Dshell)

Figure 3: Typical data flow for a DSll~LI, simulation

3.3 DSHELL Model Libraries
Classes for actual device models are derived from any
of the four base classes described in section 3.2. The
code for model classes may be grouped into reusable
libraries, organized perhaps by mission, by vendor, or
by type of device. There are several models available
for thrusters, gyroscopes, star scanners, accelerome-
ters, and other devices used on JPL spacecraft. They
can be used as-is for quick prototype simulations, or
as a starting point for similar models on a new space-
craft.

rln automatic code generator is available to sim-
plify model development. The model developer
writes a text file that describes the model, listing
the types, names, and descriptions of the parame-
ters, states, commands, and outputs assc)ciated with
the model. A prototype graphical user interface is
available for generating this file. The code generator
takes this file as input, and generates a C++ header
file and stub source file for the model class. The de-
veloper then fills in methods (pre/post 1/0 step and
the rest) as needed to define the model’s behavior.
Very lit tle knowledge of C+-+ is needed, but it is
useful to be familiar with C.

The automatic code generator also makes an in-
terface class, specific to the model clas the de-
veloper is defining (figure 4). The developer never
changes this code and does not need to even look at
it. This class provides rnoclel-specific functions to is-
sue commancls and retrieve outputs fro~n a model,
code commonly needed to define a text interface
to the rnoclel’s data, and other rtlethods needed by
DSIIELL. The command and output functions would
typically be called from the sinmlator or maino rou-
tine that calls other DSFIELL routines. They are
model-specific to keep them type-safe (avoiding the
use of void * pointers reduces the occurrence of some
prograrnrnitlg errors). This also allow’s a simpler irl-
terface for commands and outputs of basic types, and
is faster than performing any kind of marshaling or
conversion of structures. The code generated for the
interface class is meant to eliminate tedious coding
by a developer that is typically needed for a model.
It is generated in a class separate from the actual
lllOdel class to clearly delineate code the developer
should moclify. This helps keep the code for the stub
model class small.

(Model ‘)

1(
[.. l.’!..!

~tuator) (*or ~ (MO!.,) (~co*~) D.hellbase classes

~.~ ~~
, model-specific interface class

(<Pn~:l~ aufomatlcallygenerated, developer does not modify
provides teti Interface to model

- i
, ~mmgtod~ ~ti:f~~~atiOmatlca!ly generated

devaloper fills in methods to define model behavior

Figure 4: DSHELL class hierarchy

3.4 DSfiFX,L Run Time Environment

The input file containing DARTS information may
also contain statements to instantiate models, speci-
fying the model class and instance name. States and
parameters for a model may be initialized here as
well. Again, not hard-coding this information makes
it easier to change configurations without recompil-
ing code.

Like LIBSIM, DSHELL also has an extensive set of
Tcl commands which can be used to get information
about the simulation and rnoclels therein. In par-
ticular, the values of model states and parameters
can be peeked ancl poked from the command line,
commands to rnoclels can be issued as if they came
fro[n flight softtvare, and outputs froln models can
be exa!nined. There are enough commands available
to query which models are instantiated and the data
types and descriptions of model states that a graph-
ical user interface to display state data can dynam-
ically create itself, so a programmer does not need
to change GUI code if the simulation configuration
changes or new models are added. A prototype of
such a C~UI has been implemented using T/i.

DAWM and DSH~LL model state variables can
checkpointed to a text file containing “poke” conl-
mands. This file can be edited by the user if neces-
sary without needing to know any syntax other than
thealready familiar Tclcommands. On a subsequent
run, this file can be used to initialize states and re-
sume a previous run.

DSHF,LL can also keep track of multiple S/C cly-
namics models. Alternate dynamics models of the
same spacecraft can be selected from (such as in-
cruise versus in-orbit models with different fuel slosh
behavior, or pre- versus post- probe release). Only
one such alternate dynamics model may be active at
any given time, and DSHELL device moclels inlplic-
itly interface only to the active model. Or, multiple
spacecraft can be bookkept, as in the New hlillen-
nium Program’s Deep Space Flight 3 formation fly-
ing mission. Any combination of alternate models of
multiple spacecraft is allowed.

As with LIBSIM and DARTS models, DSHF,LL mod-
els can be deactivated from the Tcl ccmlmand line or
startup file. This is useful for debugging, or if there
are alternate models for the same spacecraft device
(perhaps one would interface to actual hardware-in-
the-loop).

It is also possible to schedule C functions and Tcl
scripts at run time for either one-time or repeated
execution. This is very handy for debugging and
monitoring variables. It is also useful for interfac-
ing D SHELL to other tools. Such interfaces have
been created to Real-Tinle Innovation, Inc.’s data
monitoring tool Stethoscope and to JPL’s 3D viewer
Dview. Interfaces to other tools can be created in a
similar manner, without having to change DSH~LL
code. Aside from keeping DSHELL code smaller and
cleaner, it makes it easy to mix and match inter-
faces among testbeds which use different monitoring
tools.

4 C O N C L U S I O N

An adaptable spacecraft simulation testbed is essen-
tial for the design, development, testing and inte-
gration of autonomy flight software and hardware.
The testbed needs to support simulations with a wide
range of capabilities. This paper describes the recon-
figurable .-lTBE simulation environment and tools
that comprise it.

Both LIBSIM and DSH~LL use the same core code
for providing a text interface to their models, which
is why the capabilities for giving visibility into the
nlodel data are similar. The main differences be-
tween the tools are in the methods associated with
models, and when they are called. LIRSIM provides a
mechanism for models to share data with each other,
while DSHELL provides methc)ds to interface with the
dynamics integrator at the appropriate times.

h~any models needed for simulation neither pro-
vide nor require dynamics information, but do de-
pencl on and should affect the states of other models.
Adding inter-model communication and sorting to
Ds}t~LL was considered, but the data flow becomes

messy because DSHEX, L models ha~’e more than one
nlcthod executed per tirnc step. A model could con-
ceivably try to usc an input value in its pre 1/0 step
method, for instance, but the upstream model pro-
ducing the value not do so until its post 1/0 step
method is called. There did not appear to be an easy
u’ay to specify or detect such a case. Additionally it
is not clear when to do the dynamics integration in a
ti[ne step. So LIFISIM was designecl to allow a model
orlc “tick” function per time step.

The tools can be usecl together when a developer
writes a LIRSIM model that wraps DSHCLL. The
“tick” function of this wr-appel model calls DSFrEX,L
functions to issue commands to DSHRLL models, ad-
vance DSH~LL’S notion of time, and retrieve outputs
from DSH~LL models. For example, the “Dynamic-
sSin~ulator” components showlk in figure 2 is such a
wrapper. The “PropDrvElectronics” model receives
thruster commands from flight software via a bus,
but if it is powered off by the “PwrDistrUnit” or is
in a fault state, it will not pass these commands on to
“Dynan~icsSinlulator” which contains thruster nlod-
els that do the actual work of applying forces. Expe-
rience with New Millennium Deep Space 1 has shown
that moving fault injection and other functionality
that had traditionally been in DSHELL models to
L1A31M has kept the DSH~LL nlodels simpler and fo-
cussed on the tasks for which they are intended.

Future work will include further blending of these
tools, in part by implementing an automatic DSHELL
wrapper model, so a developer does not need to write
the code described in the previous paragraph. Addi-
tionally, we arc looking into how ATBE’s architec-
ture and toolkit can be enhanced to provide thermal,
power, and fuel consumption modeling. The ability
to usc these tools either independently or in various
combinations }vith one another has been valuable and
will be retained.

ATF3E tools have been used on many JPL flight
projects, and are continually evolving based on ex-
perience with these projects. DAR’rS is used by the
Cassirli project development, test, ancl integration
tcarns. DSHM,L is used by Clalileo, hlars Pathfinder,
and in the Flight System Testbcd on many new
projects including Stardust. LIBSIL1 is in use by the
Nc\v Nlillcrlniurn Program’s Deep Space Flight 1. De-
velopment of Cawini High Speed Simulator is near-
ing completion and \vill be usecl during Cassini nlis-
sion operations to test command sccluences prior to
uplink; this simulator uses AT13F tools as well.

5 A C K N O W L E D G E M E N T S

l’hc authors would like to express their thanks for the
work performed by the other AT13E team members:
David Breda, Kirk Fleming, Martin Gilbert, David
Henriquez, Linh Phan, Ling Su, and Matt If’ette.

The research described in this paper was per-
formed at the Jet Propulsion Laboratory, California
I[lstitute of Technology, under contract Jvith the Na-
tional .Aeronautics and Space Adrninistratiorl.

R E F E R E N C E S
[1] J . Biesiadecki, A . Ja in , “A Reconfigurablc

Testbed Environment for Spacecraft Autonomy,”
in Simulators for European Space Programmed,
Jth Workshop, (Noordwijk, The Netherlands),
Oct. 1996.

[2] J. Biesiadecki, “LIIISIM Simulator h(lodel Devel-
opment Library,” Jet Propulsion Laboratory, in-
ternal document, (Pmadena, CA), Nov. 1996.

[3] J. Ousterhout, “Tc1 and the Tk Toolkit,”
Addison- Wesley Publishing Company, 1994.

[4] A. Jain and G. h4an, “Real-Time Simulation of
the Casini Spacecraft Using DARTS: Functional
Capabilities and the Spatial Algebra Algorithm,”
in 5th Annual Conference on Aerospace Compu-
tational Control, Aug. 1992.

[5] G. Rodriguez, K. Kreutz-Delgado, and A. Jain,
“A Spatial Operator Algebra for Manipulator
Modeling and Control,” The International Jour-
nal of Robotics Research, vol. 10, pp. 371–381,
Aug. 1991.

[6] A. Jain, “Unified Formulation of Dynamics
for Serial Rigid Multibody Systems,” Joulmal
of Guidance, Control and Dynamics, vol. 14,
pp. 531-542, May- June 1991.

[7] A. Jain, N. Vaidehi, G. Roclriguez, “A Fast
Recursive Algorithm for Molecular Dynamics
Simulation,” Journal of Computational Physics,
vol. 106, no. 2, pp. 258–268, June 1993.

