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Extended  Abstract 

Parallel adaptive mesh refinement (AMR) is an  important  numerical technique that leads 
to the efficient solution of many physical and engineering problems. While some AMR 
libraries  have  been  designed,  there  are many advantages  to  considering  alternative 
approaches based on language paradigms and standards. Furthermore, it  is  even more 
desirable  to  develop  a framework that allows one to  easily compose solutions  to new 
problems where solvers and multi-grid methods can interoperate  freely.  This kind of 
framework-oriented design is even amenable to the features of computational power grid 
processing. 

This abstract describes recent work  where a very general approach to AMR has been 
devised by combining the best aspects of object-oriented programming using modern 
aspects of Fortran 90/95, the parallelizing features of OpenMP,  and solvers designed for 
interoperability. The approach combines efficiency, portability, and maintainability for 
the application scientist, building  on results described in Balsara  and  Norton [2]. 

Our  approach,  based  entirely  on  well-defined  standards,  reduces  programming 
complexity, preserves the investment  in existing Fortran-based solvers, and benefits from 
years of compiler  optimization  techniques. Our very general  approach  is  scalable, 
efficient, and complete, integrating emerging trends in high  performance computing with 
the  desire  to  create  interoperable  frameworks  that  simplify  the  modification of 
simulations  to new problems. Our work has been applied to  Balsara's RIEMANN 
framework, see Balsara [ 11 and  references therein. 

mailto:dbalsara@ncsa.uiuc.edu


Technical  Significance 

Our approach combines the parallelizing directives of OpenMP with the Fortran 90/95 
standard  for  structured AMR. We  have developed efficient,  parallel,  and  scalable 
methods for performing all of the tasks required. This includes creation and deletion of 
AMR hierarchies, processing of inter-grid transfers acrosdwithin levels, and the solution 
of these grids anywhere in the hierarchy in a load balanced, and parallel, way. 

Introducing object-oriented programming techniques with the new features of Fortran 
90/95 (see Decyk, Norton, and Szymanski [4,5]) makes it possible build intricate AMR 
structures that are efficient. While the array-syntax and dynamic memory  management 
features are most familiar, new features including modules, derived-types (user defined 
types), use-association, generic interfaces, (safe) pointers, and recursion simplify AMR 
data structure design. 

Fortran 90/95 allows us to create, manage, and delete grid types that are used in  the 
solution  process.  These  grids  can  overlap  and  support  parent,  child,  and  sibling 
relationships across AMR levels along with the interpolation of boundary conditions. 
Collections of grids at a given level in the AMR hierarchy totally cover the regions that 
need refinement. Fortran 90/95 modules  allow one to define specific features that can be 
applied to the grids, either as a collection or individually. Additional features useful for 
the solution process can  be included in the module as well, and when used in main 
programs that allows objects to  be created. State changes in the objects are limited to the 
routines  that  the  module makes public. This object-oriented design  allows all grid 
operations to be completely parallelized including the regridding strategies (see Berger 
and Rigoutsos [3]). 

The features of OpenMP that complete our approach are the directives that support data 
distribution, generation of threads for independent loops, and the do schedule clause 
that allows one to support the “owner-computesyy rule for efficient processing. We have 
also implemented a very efficient load-balancer to ensure that grid objects are created and 
processed in the hierarchy in a balanced and parallel way. Figure1 briefly shows the use 
of Fortran 90/95 object abstractions and the directives. 

type  (single-grid),  pointer : :  t h i s  
! $OMP PARALLEL DO SCHEDULE ( s t a t i c ,  1) 
! $OMP PRIVATE ( ig r id ,   t h i s )  
!$OMP& SHARED(leve1, grid-is-active,  pointers-to-grids) 

do i g r i d  = 1, max-single-grids 
i f  (grid-is-active(leve1,  igrid) == 1) then 

t h i s  => pointers-to-grids(leve1, igr id)%sgp 
c a l l  wrapper-solver-single-grid ( t h i s ,  . . .  ) 

end i f  
end do 

!$OMP END PARALLEL DO 



The code segment illustrates how a series of dynamically defined grids is processed at an 
AMR level, and how a Fortran 90/95 wrapper is used to  call an existing Fortran 77 
solver.  The do schedule ensures  that  processors work on  the  grids  that  they 
themselves  own.  (Most of the  arrays could be replaced with lists,  but  arrays are 
demonstrated for simplicity. Module  and object definitions have also been omitted in this 
abstract.) 

In AMR, where  changes  in computational work can only be  estimated  at  run-time, 
applications require dynamic load balancing over each level in the AMR hierarchy. We 
have  designed a specialized  load  balancer  that  is  uniquely  well  suited for AMR 
applications. The load balancing is iterative, and improves in quality with successive 
iterations. It utilizes a pairwise exchange of load assigned to available processors such 
that  an  exchange  causes a maximal reduction  in  load  imbalance  between  pairs of 
processors. The computational cost of the algorithm is low, and it can be parallelized 
easily. 

Framework-Based  Design 

OpenMP provides the mechanism for bringing together the many components of  AMR 
processing into an interoperable framework suitable for a wide variety of applications. 
Entire levels in the AMR hierarchy can be builthebuilt on different subsets of processors 
in a load balanced fashion. The adaptive process can be tailored for  radiative,  self- 
gravitating flow, reactive flow, and particle problems  without affecting the parallelization 
of  how grid regions are created and processed  based on an OpenMP strategy. Our general 
load balancer ensures efficient processing and can adapt to the features of computational 
power grids where varying speeds of the processors and high latencies must be tolerated. 
Finally, the Berger and Rigoutsos [3] regridding scheme allows one  to automatically 
identify regions for refinement and dynamic mesh  generation. 

We  have experimented with multi-grid methods that interoperate with Newton-Krylov 
methods leading to a "plug-and-play" algorithm for radiative transfer. That is, once the 
user has devised the core algorithms for radiative transfer multi-grid and Newton-Krylov 
are easily adapted for the radiative transfer algorithm. This allows one who  knows the 
core  algorithms well to benefit without knowing  much about multi-grid or Newton- 
Krylov. Combining all of these issues, where OpenMP supports parallelism, has been 
powerful. Indeed, building such a system from scratch would be a substantial effort. 
Performance results for scalability are shown in Table1 . 

I Scalability  Performance  Results for Processing  and AMR Hierarchy I 
I # of Processors I MFlops I Relative  Speedup I Cumulative  Speedup I 
1 

3 6 2 . 0 0  4 

9 4 . 5 1  

7 . 2 7   1 . 9 0  687 .20  8 

3 . 8 3  3 . 8 3  

_" "_ 

1 6  1 4 . 7 4  2 . 0 2  1 , 3 9 3 . 2 5  



32 I 2 , 5 7 8 . 7 0  I 
4 8   3 , 7 6 6 . 6 7   1 . 4 6   3 9 . 8 5  

6 4   4 , 8 8 5 . 7 2   1 . 3 0   5 1 . 7 0  

9 6   7 , 6 1 2 . 7 4   1 . 5 6   8 0 . 5 5  

1 2 8   9 , 9 7 8 . 2 0   1 . 3 1   1 0 5 . 5 7  

1 9 2   1 5 , 0 0 2 . 4 0   1 . 5 0   1 5 8 . 3 5  

256 I 1 7 , 3 1 7 . 6 5  I 1 . 1 5  I 1 8 2 . 1 0  
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