
SUsh4lTTED TO WORKSHOP ON O P E N m AF'PLICATIONS AND TOOLS

OpenMP-based Frameworks for Interoperable Structured Adaptive
Methods

Dinshaw S. Balsara
National Center for Supercomputing Applications

and
Center for Simulation of Advanced Rockets
University of Illinois at Urbana-Champaign

dbalsara@ncsa.uiuc.edu

Charles D. Norton
National Aeronautics and Space Administration

Jet Propulsion Laboratory, California Institute of Technology
High Performance Computing Systems and Applications Group

and
Center for Space Mission Information and Software Systems

nortonc@bryce.ipl.nasa._pov

Extended Abstract

Parallel adaptive mesh refinement (AMR) is an important numerical technique that leads
to the efficient solution of many physical and engineering problems. While some AMR
libraries have been designed, there are many advantages to considering alternative
approaches based on language paradigms and standards. Furthermore, it is even more
desirable to develop a framework that allows one to easily compose solutions to new
problems where solvers and multi-grid methods can interoperate freely. This kind of
framework-oriented design is even amenable to the features of computational power grid
processing.

This abstract describes recent work where a very general approach to AMR has been
devised by combining the best aspects of object-oriented programming using modern
aspects of Fortran 90/95, the parallelizing features of OpenMP, and solvers designed for
interoperability. The approach combines efficiency, portability, and maintainability for
the application scientist, building on results described in Balsara and Norton [2].

Our approach, based entirely on well-defined standards, reduces programming
complexity, preserves the investment in existing Fortran-based solvers, and benefits from
years of compiler optimization techniques. Our very general approach is scalable,
efficient, and complete, integrating emerging trends in high performance computing with
the desire to create interoperable frameworks that simplify the modification of
simulations to new problems. Our work has been applied to Balsara's RIEMANN
framework, see Balsara [11 and references therein.

mailto:dbalsara@ncsa.uiuc.edu

Technical Significance

Our approach combines the parallelizing directives of OpenMP with the Fortran 90/95
standard for structured AMR. We have developed efficient, parallel, and scalable
methods for performing all of the tasks required. This includes creation and deletion of
AMR hierarchies, processing of inter-grid transfers acrosdwithin levels, and the solution
of these grids anywhere in the hierarchy in a load balanced, and parallel, way.

Introducing object-oriented programming techniques with the new features of Fortran
90/95 (see Decyk, Norton, and Szymanski [4,5]) makes it possible build intricate AMR
structures that are efficient. While the array-syntax and dynamic memory management
features are most familiar, new features including modules, derived-types (user defined
types), use-association, generic interfaces, (safe) pointers, and recursion simplify AMR
data structure design.

Fortran 90/95 allows us to create, manage, and delete grid types that are used in the
solution process. These grids can overlap and support parent, child, and sibling
relationships across AMR levels along with the interpolation of boundary conditions.
Collections of grids at a given level in the AMR hierarchy totally cover the regions that
need refinement. Fortran 90/95 modules allow one to define specific features that can be
applied to the grids, either as a collection or individually. Additional features useful for
the solution process can be included in the module as well, and when used in main
programs that allows objects to be created. State changes in the objects are limited to the
routines that the module makes public. This object-oriented design allows all grid
operations to be completely parallelized including the regridding strategies (see Berger
and Rigoutsos [3]).

The features of OpenMP that complete our approach are the directives that support data
distribution, generation of threads for independent loops, and the do schedule clause
that allows one to support the “owner-computesyy rule for efficient processing. We have
also implemented a very efficient load-balancer to ensure that grid objects are created and
processed in the hierarchy in a balanced and parallel way. Figure1 briefly shows the use
of Fortran 90/95 object abstractions and the directives.

type (single-grid), pointer : : t h i s
! $OMP PARALLEL DO SCHEDULE (s t a t i c , 1)
! $OMP PRIVATE (ig r id , t h i s)
!$OMP& SHARED(leve1, grid-is-active, pointers-to-grids)

do i g r i d = 1, max-single-grids
i f (grid-is-active(leve1, igrid) == 1) then

t h i s => pointers-to-grids(leve1, igr id)%sgp
c a l l wrapper-solver-single-grid (t h i s , . . .)

end i f
end do

!$OMP END PARALLEL DO

The code segment illustrates how a series of dynamically defined grids is processed at an
AMR level, and how a Fortran 90/95 wrapper is used to call an existing Fortran 77
solver. The do schedule ensures that processors work on the grids that they
themselves own. (Most of the arrays could be replaced with lists, but arrays are
demonstrated for simplicity. Module and object definitions have also been omitted in this
abstract.)

In AMR, where changes in computational work can only be estimated at run-time,
applications require dynamic load balancing over each level in the AMR hierarchy. We
have designed a specialized load balancer that is uniquely well suited for AMR
applications. The load balancing is iterative, and improves in quality with successive
iterations. It utilizes a pairwise exchange of load assigned to available processors such
that an exchange causes a maximal reduction in load imbalance between pairs of
processors. The computational cost of the algorithm is low, and it can be parallelized
easily.

Framework-Based Design

OpenMP provides the mechanism for bringing together the many components of AMR
processing into an interoperable framework suitable for a wide variety of applications.
Entire levels in the AMR hierarchy can be builthebuilt on different subsets of processors
in a load balanced fashion. The adaptive process can be tailored for radiative, self-
gravitating flow, reactive flow, and particle problems without affecting the parallelization
of how grid regions are created and processed based on an OpenMP strategy. Our general
load balancer ensures efficient processing and can adapt to the features of computational
power grids where varying speeds of the processors and high latencies must be tolerated.
Finally, the Berger and Rigoutsos [3] regridding scheme allows one to automatically
identify regions for refinement and dynamic mesh generation.

We have experimented with multi-grid methods that interoperate with Newton-Krylov
methods leading to a "plug-and-play" algorithm for radiative transfer. That is, once the
user has devised the core algorithms for radiative transfer multi-grid and Newton-Krylov
are easily adapted for the radiative transfer algorithm. This allows one who knows the
core algorithms well to benefit without knowing much about multi-grid or Newton-
Krylov. Combining all of these issues, where OpenMP supports parallelism, has been
powerful. Indeed, building such a system from scratch would be a substantial effort.
Performance results for scalability are shown in Table1 .

I Scalability Performance Results for Processing and AMR Hierarchy I
I # of Processors I MFlops I Relative Speedup I Cumulative Speedup I
1

3 6 2 . 0 0 4

9 4 . 5 1

7 . 2 7 1 . 9 0 687 .20 8

3 . 8 3 3 . 8 3

" "

1 6 1 4 . 7 4 2 . 0 2 1 , 3 9 3 . 2 5

32 I 2 , 5 7 8 . 7 0 I
4 8 3 , 7 6 6 . 6 7 1 . 4 6 3 9 . 8 5

6 4 4 , 8 8 5 . 7 2 1 . 3 0 5 1 . 7 0

9 6 7 , 6 1 2 . 7 4 1 . 5 6 8 0 . 5 5

1 2 8 9 , 9 7 8 . 2 0 1 . 3 1 1 0 5 . 5 7

1 9 2 1 5 , 0 0 2 . 4 0 1 . 5 0 1 5 8 . 3 5

256 I 1 7 , 3 1 7 . 6 5 I 1 . 1 5 I 1 8 2 . 1 0

References

1 . D. Balsara. Linearized Formulation of the Riemann Problem for Radiation
Magnetohydrodynamics. J. Quant. Spectroscopy and Radiation Tranafer, 62: 167-
189,1999.

2. D. Balsara and C. D. Norton. Highly Parallel Structured Adaptive Mesh Refinement
Using Parallel Language-Based Approaches. Parallel Computing, to appear 2000.

3. M. Berger and I. Rigoutsos. An Algorithm for Point Clustering and Grid Generation.
IEEE Trans. on System, Man, and Cybernetics, 21:61-75, 1991.

4. V. K. Decyk, C. D. Norton, and B. K. Szymanski. How to Express C++ Concepts in
Fortran 90. Scientific Programming, 6(4):363-390, Winter 1997.10s Press.

5 . C. D. Norton. Object-Oriented Scientific Programming with Fortran 90. In J.
Schaeffer, editor, High Pegormance Computing Systems and Applications, pages 47-
58, Kluwer Academic Publishers, 1998.

