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The purpose of assurance activities is to reduce risk, 
thereby ensuring requirements. However, assurance 
activities incur costs such as budget, schedule, mass ( e g ,  
radiation shielding), etc. The selection of assurance 
activities to perform is thus an assurance optimization 
problem. For example, for a given budget, selection of the 
set of assurance activities that will minimize risk (i.e., 
maximize requirements). Alternately, for a given level of 
requirements, selection of the minimal cost set of 
assurance activities that will achieve that level of 
requirements. 
Our work demonstrates a novel technique to assurance 
optimization. Users indicate their preferences by 
assigning relative weights to solution classes (e.g., 
weighting highly a solution class that is low risk and at or 
below the users’ target cost threshold, and weighing less 
highly a solution class that is low risk but slightly above 
the users’ target cost threshold). The technique uses 
machine learning to identify the critical choices that lead 
to contrastingly different classifications. The net result is 
near-optimal solutions to assurance optimization 
problems, even in huge search spaces. Furthermore, the 
technique reveals which of the many decisions are the 
most crucial to achieving those optimal results. 
The technique is realized in an operational computer 
program. Experiments on assurance datasets of 
considerable size show promising empirical results. For 
example, we experimented on an assurance model that 
arose from a study of an advanced spacecraft technology. 
This assurance model contained 99 options of risk 
mitigation actions, i.e. 299(= lo3’) possible combinations 
of these actions. Our technique was successful at 
determining the 16 actions most crucial to perform, the 14 
actions most crucial to not perform, and the remaining 66 
actions whose influence was the least on the quality of the 
solution. 
A literature review [7], a mathematical analysis [6] and 
experiments on numerous case studies suggest this 
technique has broad applicability. 

1. The technique 
Our technique follows an iterative cycle of execution, 
learning and decision-making. This is shown in Figure 1. 
The assurance model is executed to generate a random set 
of examples. Our implementation, T A U ,  is the “contrast 
set learner” that identifies the critical decision 
alternatives. The human experts then scrutinize these, and 
select the decision set of their choice. This selection is 
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from among the several leading candidates that the learner 
has identified. This gives the human experts the 
opportunity to inject strategic guidance into this overall 
decision process. After several cycles, the result is a set of 
near-optimal assurance actions that the experts feel 
personally committed to. 
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Figure 1. Execution/Learning/Decision Cycle 

Alternate approaches (e.g. standard decision tree learning 
or genetic algorithms) are non-iterative and, to a user, the 
resulting conclusions are somewhat opaque in the sense 
that they don’t know where they came from. Also, 
0 Experiments with decision tree learners resulted in 

theories too large to read. 
0 Experiments with genetic algorithms in this domain 

proposed far more actions than our method. 
2. Experiments 

We report briefly upon two sizable experiments with this 
technique. The first experiment dealt with a large 
assurance model built using NASA’s Defect Detection 
and Prevention (DDP), the second with COCOMO-I1 - a 
public domain software cost/risk model. 

NASA’s Defect Detection and Prevention (DDP) process 
uses risk as a “currency” to enable trades between cost of 
assurance and attainment of requirements [ 1,2]. 
A representative real-life DDP dataset was used for the 
assurance optimization experiment [3]. This dataset 
contains 99 different assurance activities, each of which 
can be chosen (or not) independently of the others. Thus 
in principle the decision space is 299(=1030) possible 
combinations. The figure on the next page shows the 
before-and-after results of the experiment. 

2.1 DDP Experiment 
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Before: Each of the tiny black points indicates a 
random selection out of the 299 possible combinations 
of assurance activities. The wide spread of these 
points indicates that it is possible to waste a lot of 
resources and/or fail to maximize requirements. 
After: TAR2, the contrast set learner tool, was able to 
identify the 30 most critical of those 99 decisions, 
namely the 16 actions most crucial to perform, and 
the 14 actions most crucial to not perform. Making 
the decisions reduced to the much smaller white area 
towards the high-benefit low-cost quadrant of the 
chart. The variability remaining within the white 
region results from the other 66 as yet unconstrained 
decisions. Picking a near-optimal solution from 
within this region is straightforward. 

2.2 COCOMO Experiment 

0 

Menzies&Sinsel used an early version of TAR2 to 
explore a space of 54 million options and find the two key 
variables that could most control the system [5]. 
In that application, a COCOMO-based tool [4] was used 
to evaluate the risk that a NASA software project would 
suffer from develop-time overrun. The tool used in that 
study required a guesstimate of the source lines of code 
(SLOC) in the system and certain internal tuning 
parameters, which ideally would be learnt from historical 
data. Lacking such data, Menzies & Sinsel used three 
guesses for SLOC and three sets of tunings that they took 
from the literature. Competing stakeholders proposed 1 1 
changes to a project; i.e. 2” = 2048 options. Some of the 
project features were unclear and, for those features, 
project managers could only offer ranges for the required 
inputs to the COCOMO-based tool. These ranges offered 
2930 possible combinations for the inputs. When 
combined with the other uncertainties, this generated a 
space of 54 million possibilities: 
54 million= 

tunings). 

Faced with this overdose of 

(2930*2”*three guesses for  SLOC * three 

possibilities, Menzies & Sinsel 
performed 50,000 Monte Carlo 
simulations where the inputs were 
taken from the 54 million 
possibilities. TAR2 found that, of the 
11 proposed changes, seven had 
little impact. Of the remaining four 
proposed changes, two were found by 
TAR2 to be clearly superior. 
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