
Assurance Optimization
Martin S. Feather

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr
Pasadena CA 91 109-8099

Martin.S.Feather@Jpl.Nasa.Gov

The purpose of assurance activities is to reduce risk,
thereby ensuring requirements. However, assurance
activities incur costs such as budget, schedule, mass (e g ,
radiation shielding), etc. The selection of assurance
activities to perform is thus an assurance optimization
problem. For example, for a given budget, selection of the
set of assurance activities that will minimize risk (i.e.,
maximize requirements). Alternately, for a given level of
requirements, selection of the minimal cost set of
assurance activities that will achieve that level of
requirements.
Our work demonstrates a novel technique to assurance
optimization. Users indicate their preferences by
assigning relative weights to solution classes (e.g.,
weighting highly a solution class that is low risk and at or
below the users’ target cost threshold, and weighing less
highly a solution class that is low risk but slightly above
the users’ target cost threshold). The technique uses
machine learning to identify the critical choices that lead
to contrastingly different classifications. The net result is
near-optimal solutions to assurance optimization
problems, even in huge search spaces. Furthermore, the
technique reveals which of the many decisions are the
most crucial to achieving those optimal results.
The technique is realized in an operational computer
program. Experiments on assurance datasets of
considerable size show promising empirical results. For
example, we experimented on an assurance model that
arose from a study of an advanced spacecraft technology.
This assurance model contained 99 options of risk
mitigation actions, i.e. 299(= lo3’) possible combinations
of these actions. Our technique was successful at
determining the 16 actions most crucial to perform, the 14
actions most crucial to not perform, and the remaining 66
actions whose influence was the least on the quality of the
solution.
A literature review [7], a mathematical analysis [6] and
experiments on numerous case studies suggest this
technique has broad applicability.

1. The technique
Our technique follows an iterative cycle of execution,
learning and decision-making. This is shown in Figure 1.
The assurance model is executed to generate a random set
of examples. Our implementation, T A U , is the “contrast
set learner” that identifies the critical decision
alternatives. The human experts then scrutinize these, and
select the decision set of their choice. This selection is

Tim Menzies
Lane Department of Computer Science & Electrical Engineering,

West Virginia University
PO Box 6109

Morgantown WV 26506-6109
tim@menzies.com

from among the several leading candidates that the learner
has identified. This gives the human experts the
opportunity to inject strategic guidance into this overall
decision process. After several cycles, the result is a set of
near-optimal assurance actions that the experts feel
personally committed to.

7 1 examples 1-1
I 1 bi I

Learning Assurance
Model

I I

critical
decision

decision altematives

1. P=Yes 1. X = N o
2. Q=Yes or 2. Y =Ye:
3. R = N o 3. Z=Yes

selection

Human Experts

Figure 1. Execution/Learning/Decision Cycle

Alternate approaches (e.g. standard decision tree learning
or genetic algorithms) are non-iterative and, to a user, the
resulting conclusions are somewhat opaque in the sense
that they don’t know where they came from. Also,
0 Experiments with decision tree learners resulted in

theories too large to read.
0 Experiments with genetic algorithms in this domain

proposed far more actions than our method.
2. Experiments

We report briefly upon two sizable experiments with this
technique. The first experiment dealt with a large
assurance model built using NASA’s Defect Detection
and Prevention (DDP), the second with COCOMO-I1 - a
public domain software cost/risk model.

NASA’s Defect Detection and Prevention (DDP) process
uses risk as a “currency” to enable trades between cost of
assurance and attainment of requirements [1,2].
A representative real-life DDP dataset was used for the
assurance optimization experiment [3]. This dataset
contains 99 different assurance activities, each of which
can be chosen (or not) independently of the others. Thus
in principle the decision space is 299(=1030) possible
combinations. The figure on the next page shows the
before-and-after results of the experiment.

2.1 DDP Experiment

mailto:Martin.S.Feather@Jpl.Nasa.Gov
mailto:tim@menzies.com

Before: Each of the tiny black points indicates a
random selection out of the 299 possible combinations
of assurance activities. The wide spread of these
points indicates that it is possible to waste a lot of
resources and/or fail to maximize requirements.
After: TAR2, the contrast set learner tool, was able to
identify the 30 most critical of those 99 decisions,
namely the 16 actions most crucial to perform, and
the 14 actions most crucial to not perform. Making
the decisions reduced to the much smaller white area
towards the high-benefit low-cost quadrant of the
chart. The variability remaining within the white
region results from the other 66 as yet unconstrained
decisions. Picking a near-optimal solution from
within this region is straightforward.

2.2 COCOMO Experiment

0

Menzies&Sinsel used an early version of TAR2 to
explore a space of 54 million options and find the two key
variables that could most control the system [5].
In that application, a COCOMO-based tool [4] was used
to evaluate the risk that a NASA software project would
suffer from develop-time overrun. The tool used in that
study required a guesstimate of the source lines of code
(SLOC) in the system and certain internal tuning
parameters, which ideally would be learnt from historical
data. Lacking such data, Menzies & Sinsel used three
guesses for SLOC and three sets of tunings that they took
from the literature. Competing stakeholders proposed 1 1
changes to a project; i.e. 2” = 2048 options. Some of the
project features were unclear and, for those features,
project managers could only offer ranges for the required
inputs to the COCOMO-based tool. These ranges offered
2930 possible combinations for the inputs. When
combined with the other uncertainties, this generated a
space of 54 million possibilities:
54 million=

tunings).

Faced with this overdose of

(2930*2”*three guesses for SLOC * three

possibilities, Menzies & Sinsel
performed 50,000 Monte Carlo
simulations where the inputs were
taken from the 54 million
possibilities. TAR2 found that, of the
11 proposed changes, seven had
little impact. Of the remaining four
proposed changes, two were found by
TAR2 to be clearly superior.

300

250

200

150

too

50

0

3. Acknowledgements
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration, and at the
University of British Columbia, Vancouver, Canada. We
thank Steve Cornford for granting us access to experiment
on the DDP dataset.
Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply
its endorsement by the United States Government or the
Jet Propulsion Laboratory, California Institute of
Technology.

4. References
[11 S.L. Cornford, M.S. Feather & K.A. Hicks. “DDP - A tool

for life-cycle risk management”, IEEE Aerospace
Conference, Big Sky, Montana, Mar 2001, pp. 441-451.

[2] S.L. Cornford, J. Dunphy, & M.S. Feather. “Optimizing
the Design of end-to-end Spacecraft Systems using risk as a
currency”, IEEE Aerospace Conference., Big Sky,
Montana, Mar 2002.

[3] M.S. Feather & T. Menzies. “Converging on the Optimal
Attainment of Requirements”, in submission.

[4] [Madachy 19971 R. Madachy “Heuristic Risk Assessment
Using Cost Factors” , IEEE Software, 1997, 14,3, pages
51-59, May

[SI [Menzies2000] T. Menzies and E. Sinsel, “Practical Large
Scale What-if Queries: Case Studies with Software Risk
Assessment” Proceedings ASE 2000

[6] [Menzies 20011 T. Menzies and H. Singh. “Many Maybes
Mean (Mostly) the Same Thing”, 2nd International
Workshop on Soft Computing applied to Software
Engineering (Netherlands), February, 2001

[7] [Menzies & Cukic, 20001 Menzies & Cukic.
“Adequacy of Limited Testing for Knowledge Based
Systems”, International Journal on Artificial
Intelligence Tools (IJAIT), June, 20

0 200000 400000 600000 B00000 1000000 1200000
cost

