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Abstract- In this paper, we describe an adaptive 
networklrouting algorithm that facilitates both coherent and 
non-coherent event-based cooperative signal processing. 
The core of this algorithm is a distributed election procedure 
that produces one or multiple winners based on a context- 
dependent election metric. In scenarios where non-coherent 
signal processing techniques are applied, a central 
processing node is selected, and highly compressed sensor 
data will be gathered for processing. Energy efficiency is 
improved by reducing algorithm overhead because the 
actual sensor traffic volume is light compared to the 
messaging overhead of the algorithm. For coherent 
processing, raw data streams must be relayed from each 
sensor to the central processing node, producing large data 
streams. A multi-winner election process is initiated first to 
select only a limited number of sensors that will provide the 
raw data; then a second election process will use an energy- 
based metric to find the optimal central processing node 
whose location minimize the total relaying cost. Simulation 
result is provided to demonstrate the inherent overhead- 
delay trade-off and compare the scalability of the algorithm 
under different scenarios. 
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1. INTRODUCTION 
Cooperative signal processing, such as blind beam forming 
[3] and data fusion, is one of the most important application 
in modem sensor networks. By making several 
simultaneous observations on the same phenomenon and 
exploit the correlation in the combined data set, a great deal 
of information, which otherwise would be hidden, becomes 
available. Cooperative processing can also dramatically 

improve the quality of raw data by canceling noise from 
sensor measurement using side information supplied by 
other co-located sensors. It is a valuable application to 
sensor networks deployed for scientific, tactical, as well as 
space/planetary exploration purposes. Having many 
advantages over traditional signal processing techniques, 
there is an interest in the research community to develop 
new networking technology that can support cooperative 
signal processing. The most significant challenge in 
developing such technology is overcoming the energy 
constraint, since for most wireless sensor networks energy is 
the most expensive resource. 

While energy-efficient algorithms for network self- 
organization and routing have long been studied [4] [SI [6], 
they are not yet integrated with cooperative sensor 
operations. In [ 11, the basic concept and general approach 
for cooperative sensor operation has been described. In this 
paper, we will provide more detail description and 
discussion of a distributed algorithm that can serve as the 
enabling technological platform on top of which cooperative 
signal processing can take place. 

2. SENSOR NETWORK OPERATIONS 
Cooperative signal processing is essentially a form of 
hierarchical infomation processing where raw sensor data is 
first collected and processed by individual nodes to generate 
a parametric or filtered version of the original data, and later 
gathered at a single location for combined processing. The 
benefit of such processing is that it eliminates the 
communication cost for relaying the raw data to some entity 
outside of the sensor network for processing. It can also 
improve the quality of sensor data, probability of detection 
and false alarm, and possibly the resolution of data analysis. 

Cooperative Signal Processing 

There are two categories of cooperative signal processing 
techniques: (1) coherent combining and (2) non-coherent 
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combining. For both techniques, each sensor gathers data 
generated by a target event, performs varying degrees of 
filtering or pre-processing on the data, and then sends the 
data to a near-by node for combined processing. The terms 
“coherent” and “non-coherent” mark the degree to which 
temporal information is removed from the data. There are 
advantage and disadvantage to both approaches. For non- 
coherent processing, the raw data is often parameterized 
andor highly compressed such that the communication cost 
can be significantly reduced. However, subtle target features 
hidden in the correlation between time domain waveforms 
may be lost. For coherent processing, the raw data is only 
mildly filtered before combined processing takes place, but 
the communication cost associated with relaying long data 
streams can be prohibitively high because of energy 
resource limitation. 

Due to the significant difference in traffic volume, 
networkhouting algorithm works differently for coherent 
and non-coherent signal processing. For coherent 
processing, the bulk of energy cost will come from relaying 
data traffic; therefore we focus on finding the optimal 
processing node and the minimum energy routes. For non- 
coherent processing data traffic is lower; energy 
minimization is best achieved by reducing the overhead in 
the algorithm itself. 

Event-Based Sensor Operation 

Traditional sensor operations are time-based, where each 
sensor measures and records data from the environment 
based on a pre-determined schedule. This is perfectly 
suitable for applications that are interested in monitoring the 
environment over time rather than looking for specific event 
or phenomenon. For sensors that are designed to look for 
randomly or even rarely occurring events, an event-based 
operation is more energy efficient because it allows the 
sensors to operate primarily in a low power mode and only 
expend energy when necessary. This approach has the 
potential of prolonging the total lifetime of a sensor network 
over those that are regularly operating in an active state. 

The primary function of a networkhouting algorithm is to 
facilitate an efficient and timely transition from the low- 
power, inactive state to a highly interactive state where 
multiple nodes are collecting and processing sensor data in 
coordinated fashion. Figure 1 shows the basic operational 
flow for such networkhouting algorithm. 
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Figure 1: Basic Operations 

A sensor will spend most time in the passive state where its 
sensing capability is only partially activated to look for the 
signatures of a limited class of events. The transition from 
passive to active sensing state, where sensor circuitry is 
fully activated to collect data, relies on the whether the 
signal received in the passive mode represent strong 
statistical inference on the occurrence of an interested event. 
A simple example is to use a threshold method applied on 
the Signal to Noise Ratio ( S N R )  in certain set of frequency 
bands that comprise the signature of an event. 

Once data collection is completed, some assessment must be 
made to determine whether cooperative processing is 
necessary and if so what technique should be used. Such 
decisions can be made in a distributed fashion by pre- 
programmed algorithm in each sensor or in a centralized 
fashion by an outside user. In the former case, the sensor 
will simply proceed to declare to its neighbors the intent to 
participate in cooperative processing; in the latter case, a 
remote user or separate software agent can disseminate its 
decision to each sensor through a multi-hop network. 

The core of the algorithm lies in the distributed process of 
electing one or multiple sensor nodes to perform specific 
tasks. Depending on the goal of each election process, 
different election metric is used to find the most suitable 
candidates. In the coherent case, the algorithm is designed to 
reduce the relaying cost of raw data from the sensors to the 
processing node. There are two ways to accomplish this. 
First, the set of sensors that will provide the raw data must 
be pruned. For example, a distributed election can select a 
limited number of sensors nodes that have best SNR on the 
target signal to provide the data. Then a second election 
process will find the optimal processing node such that the 
relaying cost to gather the data can be minimized. 

In the non-coherent case, the driver for choosing the central 
processing node is to achieve low algorithm overhead 
because the actual data traffic is small. Therefore as long as 
a node has sufficient computational capability, energy 
resource and close proximity to the target and other sensors 
in the cooperative group, it would be suitable for the task. 
There is no need to try to minimize relay cost because the 



additional exchanges of routing and energy information 
would probably offset any gain in energy saving. 
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Figure 3: Coherent Signal Processing 

3. DISTRIBUTED ELECTION ALGORITHM 

One way we can select the central processor in a distributed 
fashion is by flooding the election metrics for each node 
throughout the network so that all candidates can be 
compared. However, this approach requires, assuming 
optimal flooding, at least N(N-1) transmissions or N-1 
messages per node, which is not scalable as the network size 
increases. To improve scalability, we propose two 
modifications that will lower messaging overhead: (1) 
breakdown a large election into smaller local elections, 
whose results are exchanged to derive the global winner, 
and ( 2 )  impose delay to suppress activities of those 
candidates that are likely to lose the election. 

Localized Elections 

If we consider breaking down an election among N nodes to 
two elections, one with m(2  1) nodes, one with 

N - m (2 1) nodes, then the minimum overhead required, 
assuming optimal flooding, would be: 

m(m - 1) + ( N  - m)(N - m  - 1) + m + ( N  - m) 

= m2 + ( N  - m )  

\ v 'M 
Local Elections Exchange Results (1) 

2 

The overhead reduction is: 

(2)  
N ( N  - 1) - ( m2 + ( N  - m ) 2 )  

= N ( 2 m - 1 ) - 2 m 2  20 

Intuitively we can see that having two smaller elections and 
then exchanging the election results makes the algorithm 
more efficient by eliminating information propagation for 
nodes that have lost the local election. One can further 
divide each local election into smaller sub-elections to 
reduce overhead even more. Taking this approach to the 
smallest unit, we can have local elections that occur just 
between two neighboring nodes. 
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Figure 4: Distributed Election Algorithm 

Figure 4 shows the flow chart of the election algorithm for 
each node. Candidate information is exchanged using an 
Elect message, which contains the node ID and election 
metric. Other routing information is piggybacked on the 
Elect message so that a minimum-hop spanning tree can be 
built from each sensor node to the eventual winner(s) of the 
election. Each sensor will have a registry designed to hold 
the information regarding the best candidate(s) it knows. 

In the beginning, each sensor will initialize the registry with 
its own ID and election metric and multicast this 
information to all neighbors in the cooperative group. In 
response to an incoming Elect message, each node will 
comparing the proposed candidate(s) with those in its own 
registry; when better candidates are found, the registry will 
be updated and all 1-hop neighbors belonging to the 
cooperative group will be notified. Each Elect message sent 
may spawn further exchange of Elect message as each 
sensor continue to compare candidates and update its own 
registry. Message exchange will eventually terminate when 
all sensors choose the same winner(s). 
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Figure 5: A Single Winner Election 
(A is the best candidate) 

Figure 5 shows a single winner election where node A and 
node B are respectively the best and second best candidates. 
After the first round of local election, A and B emerged as 
winners in their individual 1 -hop neighborhood; however, as 
Elect messages from node A continues to propagate and win 
each local contest, eventually all nodes will choose A as the 
winner. In this case we have 10 local elections before the 
final winner emerges. 

Overhead-Delay Trade-off 

Further efficiency gain is possible if the local elections can 
be initiated in a sequential manner, rather than occurring 
simultaneously, such that the better candidates are given 
early starts. If the best candidate is given a sufficient head 
start over others, it is possible that its Elect messages will 
propagate throughout the network before other candidates 
have the chance to voluntarily initiate their own local 
elections. In the ideal scenario, very Elect message 
exchanged will only carry the best candidate’s information, 
thus achieving the minimum overhead. 

Figure 6 shows the same election with voluntary delay 
imposed on the starting time of each sensor. Since node A is 
the best candidate, it will impose on itself the shortest delay 
and therefore starting issuing Elect messages earlier than all 
other nodes. We can see that by the time node B starts to 
initiate its own election process, node A has already 
dominated half the network. The result is that node B will 
quickly loose to the challenge from node A and the total 
number of local elections is less than the previous case 
where every candidate starts its own process 
simultaneously. In this case only 8 local elections took place 
before the winner is found. 
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Figure 6: Single Winner Election with 
Voluntary Time Delay 

Since there are no a priori knowledge which node is the best 
candidate, each node will usually begin its election process 
with some non-zero delay. This will create the absolute 
delay, the initial period of inactivity where no nodes are 
active, which increase the duration of the entire election 
process. However, overhead reduction comes from the 
differential delay, the amount of delay spread between the 
best candidate and all other nodes. Increasing the delay 
spread will, in general, increase the absolute delay as well. 
Hence we have a overhead-delay trade-off. Properly 
managing this overhead-delay trade-off will ensure the 
cooperative processing is performed in an efficient as well 
as timely manner. 

Spanning Tree Computation 

Because the ultimate goal of the election requires that each 
sensor find a route to the winner(s) of the distributed 
election, it is natural to piggyback routing information in the 
Elect messages such that routing computation can be 
performed simultaneously. The routing algorithm used in 
our scheme computes a minimum-hop spanning tree 
connecting each participating sensor to the winner(s) of the 
election. Due to the similar characteristic in message 
propagation between the election processes and a distributed 
minimum hop spanning tree computation, no additional 
complexity is added to the algorithm complexity except for 
a slightly larger payload in each Elect message. This 
approach ultimately shortens the duration of the entire 
networkhouting algorithm and may also cut overhead by 
compressing election and routing information into a single 
message. 

Election Termination 

Another key component of the election process i s  that the 
winner of the election should be able to detect the end of the 
election process. This allows the winning node to direct a 
swift transition from the election process to the next phase 
of the operation. For single winner election, a distributed 
termination detection process can be implemented by using 
a (N+l) state algorithm, where N is the number of 
participating sensor nodes in the election. 
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Figure 7: Termination Detection Algorithm 

Each node starts the election process in state TENTATIVE. 
When both condition A and B are satisfied, a node will enter 
state FINALCj) - if currently the best candidate is node j.  In 
the case the node j enter FINALCj), the election has ended 
and node j realize it has won the election. From this point 
on, it can trigger other actions necessary for the next phase 
of operation. Note that for condition B, the spanning tree 
algorithm, which is executed simultaneously with the 
election process, provides the knowledge regarding hop- 
distance with respect to any chosen candidate. Each 
neighbor will update each other of changes of state 
information {TENTATIVE, FINALCj),j=1,2.. .N} by using the 
Elect message, which as a “state” field in its payload. If the 
election process is won by node j, eventually each node will 
select node j as its candidate. Due to condition B, nodes that 
are farther away from the winner will enter state FINALCj) 
first and followed by those that are closer in hop-distance, 
until eventually node j itself enters state FINALCj), which 
ends the election process. Figure 8 illustrates this process 
graphically. 

The termination procedure for elections that produces 
multiple winners is more complex to design due to the large 
number of states and the difficulty of coordinating the 
winners. To avoid this additional layer of complexity, we 
use a passive method of detection; namely, we monitor the 
Elect message traffic and allow each node to infer whether 
the election has terminated. For example, a timer can track 
the time elapsed since the last Elect message is received. If 
sufficient time has elapsed without observing any further 
message exchanges, then a node will declare the election 
terminated and assume the candidate recorded in its registry 
as the final winner. The time out must be carefully chosen to 
balance the possibility of pre-mature election termination 
and high latency. 

Failure Recovery 

When link or node failure occurs, the network may be 
severed topologically and/or create invalid routes that 
causes a deadlock in the election process. One remedy is to 
have the data link or physical layer report such occurrence 
and either execute a local recovery procedure or re-start the 

entire election process. Another possibility is to use a timer 
so that each sensor does not wait indefinitely for the process 
to end. Some sort of reporting mechanism can also be used 
to request instruction from a remote user when the election 
process fails. In our simulation study, however, we will 
ignore the effect of random link or node failures. 
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Figure 8: Termination Detection 

4. SIMULATION STUDY 

In this section we describe a simulation study of the 
networkhouting algorithm and explore the overhead, 
latency, and scalability of the algorithm under different 
scenarios. 

Assumptions and Scenario Setup 

In our simulation study, we made the following 
assumptions: 

1. 

2. 

At any time instance, there is only one event occurring 
in the environment. 
There are two types of signal source generated as the 
result of an event: 

a. Near-field Line-of-sight source (NL) - We assume 
an event occurs at a random location in the near 
field of a sensor network and that the received 
signal is dominated by the line-of-sight component. 
The average received signal strength at each sensor 
is modeled by an inverse-square law based on the 
distance between an event and a sensor such that 
only sensor sufficiently close to the event center 
will be activated. In our simulation, the average 
received signal strength at 1 meter varies from 3dB 
(2) to 17dB (50). 

b. Strong Far-field Multi-path source (SFM) - We 
assume a far-field event occurs such that the 
received signal is dominated by the mulit-path 
propagation component. Such events will generate 
sufficiently strong signal to active most of the 
sensors even though the source is far field. The 
received signal strength at each sensor is modeled 



by i.i.d. Raleigh random variables with mean value 
of 50. 

3. For NL sources, we use a fixed network of 99 nodes, 
and the average network size is determined by the 
number of sensors close enough to detect the event. For 
sensors with received signal strength greater than the 
threshold of 0.4, it will become active and participate in 
cooperative signal processing. 

4. For SFM sources, we received signal is sufficiently 
strong to awaken most nodes in the sensor network 
because the mean value is 50 while the threshold is 
fixed at 0.4. We examine the performance of the 
algorithm under different network sizes by varying the 
number of sensor from 10 to 99 while keeping the node 
density fixed. 

We studies the following four scenarios: 

1. 
2. 
3. 
4. 

Non-coherent processing with NL sources 
Non-coherent processing with SFM sources 
Coherent processing with NL sources 
Coherent processing with SFM sources 

For non-coherent processing, received signal strength is 
used as the election metric for choosing the central 
processing node. We choose this particular election metric 
because it serves as an general indicator of the likelihood 
that it will be in close proximity to the signal source, and 
therefore in a good location to gather sensor data from other 
sensors observing the same phenomenon. 

For coherent processing, the election metric for selecting 
data source nodes is the received signal strength, which 
serves as a proxy for data quality. Data set from each sensor 
has random length, and a maximum of 5 sensors will be 
selected to provide the raw data. For the central processing 
node, total energy cost for relay data the sensor is the 
election metric. The transition from the first election to the 
second election uses a timer scheme that incurs a fixed extra 
latency of 20 simulation time units. 

Data LinWMAC Layer 

We use a simple model for the data link layer. We assume 
that a contention-free TDM-like MAC schedule exists and 
error-free transmissions. Each transmission will incur 
average frame latency of 1 simulation time unit and have the 
same energy consumption. 

Voluntary Time Delay and Election Metric Calculation 

The voluntary time delay as a function of received signal 
strength is an inverse function given by, 

where S represents the received signal strength and Do is a 
coefficient. Since the goal of imposing delay is to favor 
those with larger S, D ( S )  is an inverse function. The 
voluntary delay for coherent case is computed as a result of 
the relay energy cost (represented by the number of 
transmissions to relay all selected sensor data to node j) is 
given by: 

(4) D ( E j )  = Do - Ei 
Emax 

Since the goal is to reduce the energy cost, the delay 
imposed is proportional to the energy cost. E j  is the total 
number of transmission required to relay all sensor data to 
node j .  It is given by Lidi* where L, is the number of 

packets node i has to send, and di,i is the hop-distance 
from node i to j .  SN is the set of sensors that have been 
selected to provide the raw data for the coherent combining. 

ic SN 

Simulation Results 

Figure 9 shows the overhead-delay trade-off of our 
algorithm for non-coherent processing. 
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The first observation we can make is that for SFM sources 
the overhead reduction is more gradual as delay increases; 
while for NL sources the trade-off is stronger, and the 
overhead reaches its minimum quicker. 
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Figure 10: Scalability for Non-Coherent Processing 

Figure 10 illustrates a key difference in scalability for NL 
and SFh4 sources. We can see that for NL source, the non- 
coherent process is very scalable (nearly flat average energy 
cost for each node with respect to network size) except 
when no voluntary delay is imposed. While for SFM 
sources, the algorithm shows only slow and gradual 
improvement in scalability as the delay coefficient Do 
increases. One possible explanation for this difference is 
that for NL sources the most competitive candidates, those 
with highest received signal strengths, tend to cluster in 
close proximity. Therefore small differential delays will 
give the best candidate sufficient head start over other 
strong competitors. For SFM sources, nodes that have 
comparable received signal strengths are more spread out 
due to multi-path signal propagation. Therefore longer delay 
is required to suppress message exchanges initiated by 
losing candidates. 

Figure 11 and Figure 12, shows the overhead, latency and 
scalability of the algorithm for coherent processing. In this 
case, the scalability is still better with NL sources. However, 
the overhead-delay trade-off for SFM sources is much 
weaker than the non-coherent case. This means one must be 
willing to tolerate very long delay in order to minimize 
overhead. The average energy cost is in general higher than 
the non-coherent case because it requires two distributed 
elections. Although the networkhouting algorithm for 

coherent case has higher overhead and delay than its non- 
coherent counterpart, the less-scalable algorithm will 
generate significant performance pay-off by finding the 
optimal central node and routing paths to relay large volume 
of sensor data. Therefore saving energy in the long run. In 
reality, it is difficult to compare the relative merit of the 
algorithm under the coherent and non-coherent cases 
because the underlying traffic characteristics for these two 
types of processing are inherently different. 
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Figure 1 1: Delay-energy Trade-off for Coherent Processing 

5 .  CONCLUSION 
In this paper, we have described a networkhouting 
algorithm that facilitates adaptive event-driven cooperative 
signal processing applications in sensor network. We 
explored the inherent overhead-delay trade-offs and 
scalability of this algorithm under both coherent and non- 
coherent cases where the target signal is dominated by either 
a line-of-sight or multipath mode of signal propagation. We 
conclude that for non-coherent scenario, our algorithm is 
very scalable and has low latency. For coherent processing, 
we achieved the objective of finding a central processing 
node such that the energy cost of relaying raw data can be 
minimized at the expense of higher algorithm complexity, 
latency, and lower scalability. 
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