
An Adaptive Network/Routing Algorithm For
Energy Efficient Cooperative Signal Processing In

Sensor Networks'
Jay L. Gao

Jet Propulsion Laboratory
4800 Oak Grove Drive, M / S : 161-260

Pasadena, California 9 1 109-8099

Jav.L.Gao @ id.nasa.gov
8 18-354-9528

Abstract- In this paper, we describe an adaptive
networklrouting algorithm that facilitates both coherent and
non-coherent event-based cooperative signal processing.
The core of this algorithm is a distributed election procedure
that produces one or multiple winners based on a context-
dependent election metric. In scenarios where non-coherent
signal processing techniques are applied, a central
processing node is selected, and highly compressed sensor
data will be gathered for processing. Energy efficiency is
improved by reducing algorithm overhead because the
actual sensor traffic volume is light compared to the
messaging overhead of the algorithm. For coherent
processing, raw data streams must be relayed from each
sensor to the central processing node, producing large data
streams. A multi-winner election process is initiated first to
select only a limited number of sensors that will provide the
raw data; then a second election process will use an energy-
based metric to find the optimal central processing node
whose location minimize the total relaying cost. Simulation
result is provided to demonstrate the inherent overhead-
delay trade-off and compare the scalability of the algorithm
under different scenarios.

TABLE OF CONTENTS

1. INTRODUCTION
2. SENSOR NETWORK OPERATIONS
3. DISTRIBUTED ELECTION ALGORITHM
4. SIMULATION STUDY
5. CONCLUSION

1. INTRODUCTION
Cooperative signal processing, such as blind beam forming
[3] and data fusion, is one of the most important application
in modem sensor networks. By making several
simultaneous observations on the same phenomenon and
exploit the correlation in the combined data set, a great deal
of information, which otherwise would be hidden, becomes
available. Cooperative processing can also dramatically

improve the quality of raw data by canceling noise from
sensor measurement using side information supplied by
other co-located sensors. It is a valuable application to
sensor networks deployed for scientific, tactical, as well as
space/planetary exploration purposes. Having many
advantages over traditional signal processing techniques,
there is an interest in the research community to develop
new networking technology that can support cooperative
signal processing. The most significant challenge in
developing such technology is overcoming the energy
constraint, since for most wireless sensor networks energy is
the most expensive resource.

While energy-efficient algorithms for network self-
organization and routing have long been studied [4] [SI [6],
they are not yet integrated with cooperative sensor
operations. In [11, the basic concept and general approach
for cooperative sensor operation has been described. In this
paper, we will provide more detail description and
discussion of a distributed algorithm that can serve as the
enabling technological platform on top of which cooperative
signal processing can take place.

2. SENSOR NETWORK OPERATIONS
Cooperative signal processing is essentially a form of
hierarchical infomation processing where raw sensor data is
first collected and processed by individual nodes to generate
a parametric or filtered version of the original data, and later
gathered at a single location for combined processing. The
benefit of such processing is that it eliminates the
communication cost for relaying the raw data to some entity
outside of the sensor network for processing. It can also
improve the quality of sensor data, probability of detection
and false alarm, and possibly the resolution of data analysis.

Cooperative Signal Processing

There are two categories of cooperative signal processing
techniques: (1) coherent combining and (2) non-coherent

~~ ~ ~ ~ ~

' 0-7803-7231-X/01/$10.00/~2002 IEEE

http://id.nasa.gov

. I .

(active sensing) Sensing

no

combining. For both techniques, each sensor gathers data
generated by a target event, performs varying degrees of
filtering or pre-processing on the data, and then sends the
data to a near-by node for combined processing. The terms
“coherent” and “non-coherent” mark the degree to which
temporal information is removed from the data. There are
advantage and disadvantage to both approaches. For non-
coherent processing, the raw data is often parameterized
andor highly compressed such that the communication cost
can be significantly reduced. However, subtle target features
hidden in the correlation between time domain waveforms
may be lost. For coherent processing, the raw data is only
mildly filtered before combined processing takes place, but
the communication cost associated with relaying long data
streams can be prohibitively high because of energy
resource limitation.

Due to the significant difference in traffic volume,
networkhouting algorithm works differently for coherent
and non-coherent signal processing. For coherent
processing, the bulk of energy cost will come from relaying
data traffic; therefore we focus on finding the optimal
processing node and the minimum energy routes. For non-
coherent processing data traffic is lower; energy
minimization is best achieved by reducing the overhead in
the algorithm itself.

Event-Based Sensor Operation

Traditional sensor operations are time-based, where each
sensor measures and records data from the environment
based on a pre-determined schedule. This is perfectly
suitable for applications that are interested in monitoring the
environment over time rather than looking for specific event
or phenomenon. For sensors that are designed to look for
randomly or even rarely occurring events, an event-based
operation is more energy efficient because it allows the
sensors to operate primarily in a low power mode and only
expend energy when necessary. This approach has the
potential of prolonging the total lifetime of a sensor network
over those that are regularly operating in an active state.

The primary function of a networkhouting algorithm is to
facilitate an efficient and timely transition from the low-
power, inactive state to a highly interactive state where
multiple nodes are collecting and processing sensor data in
coordinated fashion. Figure 1 shows the basic operational
flow for such networkhouting algorithm.

I - 1
Non-Coherent

In Cooperabve
Operation

Cooperative
Function

Select data

............*,.....I. 1.. . .

U

compute
energymetnc

Figure 1: Basic Operations

A sensor will spend most time in the passive state where its
sensing capability is only partially activated to look for the
signatures of a limited class of events. The transition from
passive to active sensing state, where sensor circuitry is
fully activated to collect data, relies on the whether the
signal received in the passive mode represent strong
statistical inference on the occurrence of an interested event.
A simple example is to use a threshold method applied on
the Signal to Noise Ratio (S N R) in certain set of frequency
bands that comprise the signature of an event.

Once data collection is completed, some assessment must be
made to determine whether cooperative processing is
necessary and if so what technique should be used. Such
decisions can be made in a distributed fashion by pre-
programmed algorithm in each sensor or in a centralized
fashion by an outside user. In the former case, the sensor
will simply proceed to declare to its neighbors the intent to
participate in cooperative processing; in the latter case, a
remote user or separate software agent can disseminate its
decision to each sensor through a multi-hop network.

The core of the algorithm lies in the distributed process of
electing one or multiple sensor nodes to perform specific
tasks. Depending on the goal of each election process,
different election metric is used to find the most suitable
candidates. In the coherent case, the algorithm is designed to
reduce the relaying cost of raw data from the sensors to the
processing node. There are two ways to accomplish this.
First, the set of sensors that will provide the raw data must
be pruned. For example, a distributed election can select a
limited number of sensors nodes that have best SNR on the
target signal to provide the data. Then a second election
process will find the optimal processing node such that the
relaying cost to gather the data can be minimized.

In the non-coherent case, the driver for choosing the central
processing node is to achieve low algorithm overhead
because the actual data traffic is small. Therefore as long as
a node has sufficient computational capability, energy
resource and close proximity to the target and other sensors
in the cooperative group, it would be suitable for the task.
There is no need to try to minimize relay cost because the

additional exchanges of routing and energy information
would probably offset any gain in energy saving.

Passive Mode:
Event Detec?eg--- --..

Active Sensing:
Data Collection ,..-------....

o o o 0

Figure 2: Non-Coherent Signal Processing
Passive Mode:
Event Detected------

0 O 0

Coherent Signal
Processing Group a 0 0 0 0 0 g o

0 0 0 0

0

Active Sensing:
Data Collection ,,.-----------..

0 0 0 0

0 0 0 0

Figure 3: Coherent Signal Processing

3. DISTRIBUTED ELECTION ALGORITHM

One way we can select the central processor in a distributed
fashion is by flooding the election metrics for each node
throughout the network so that all candidates can be
compared. However, this approach requires, assuming
optimal flooding, at least N(N-1) transmissions or N-1
messages per node, which is not scalable as the network size
increases. To improve scalability, we propose two
modifications that will lower messaging overhead: (1)
breakdown a large election into smaller local elections,
whose results are exchanged to derive the global winner,
and (2) impose delay to suppress activities of those
candidates that are likely to lose the election.

Localized Elections

If we consider breaking down an election among N nodes to
two elections, one with m(2 1) nodes, one with

N - m (2 1) nodes, then the minimum overhead required,
assuming optimal flooding, would be:

m(m - 1) + (N - m)(N - m - 1) + m + (N - m)

= m2 + (N - m)

\ v 'M
Local Elections Exchange Results (1)

2

The overhead reduction is:

(2)
N (N - 1) - (m2 + (N - m) 2)

= N (2 m - 1) - 2 m 2 20

Intuitively we can see that having two smaller elections and
then exchanging the election results makes the algorithm
more efficient by eliminating information propagation for
nodes that have lost the local election. One can further
divide each local election into smaller sub-elections to
reduce overhead even more. Taking this approach to the
smallest unit, we can have local elections that occur just
between two neighboring nodes.

In-coming
Message Buffer

best candidate
in registry

Compare current best with
candidate@)

change to
gistry?

I

Register
Yes

Broadcast

information candidates
-. candidate(s) new 4

Figure 4: Distributed Election Algorithm

Figure 4 shows the flow chart of the election algorithm for
each node. Candidate information is exchanged using an
Elect message, which contains the node ID and election
metric. Other routing information is piggybacked on the
Elect message so that a minimum-hop spanning tree can be
built from each sensor node to the eventual winner(s) of the
election. Each sensor will have a registry designed to hold
the information regarding the best candidate(s) it knows.

In the beginning, each sensor will initialize the registry with
its own ID and election metric and multicast this
information to all neighbors in the cooperative group. In
response to an incoming Elect message, each node will
comparing the proposed candidate(s) with those in its own
registry; when better candidates are found, the registry will
be updated and all 1-hop neighbors belonging to the
cooperative group will be notified. Each Elect message sent
may spawn further exchange of Elect message as each
sensor continue to compare candidates and update its own
registry. Message exchange will eventually terminate when
all sensors choose the same winner(s).

0 r,O ___
A -

\ - 1 .

Figure 5: A Single Winner Election
(A is the best candidate)

Figure 5 shows a single winner election where node A and
node B are respectively the best and second best candidates.
After the first round of local election, A and B emerged as
winners in their individual 1 -hop neighborhood; however, as
Elect messages from node A continues to propagate and win
each local contest, eventually all nodes will choose A as the
winner. In this case we have 10 local elections before the
final winner emerges.

Overhead-Delay Trade-off

Further efficiency gain is possible if the local elections can
be initiated in a sequential manner, rather than occurring
simultaneously, such that the better candidates are given
early starts. If the best candidate is given a sufficient head
start over others, it is possible that its Elect messages will
propagate throughout the network before other candidates
have the chance to voluntarily initiate their own local
elections. In the ideal scenario, very Elect message
exchanged will only carry the best candidate’s information,
thus achieving the minimum overhead.

Figure 6 shows the same election with voluntary delay
imposed on the starting time of each sensor. Since node A is
the best candidate, it will impose on itself the shortest delay
and therefore starting issuing Elect messages earlier than all
other nodes. We can see that by the time node B starts to
initiate its own election process, node A has already
dominated half the network. The result is that node B will
quickly loose to the challenge from node A and the total
number of local elections is less than the previous case
where every candidate starts its own process
simultaneously. In this case only 8 local elections took place
before the winner is found.

n

Figure 6: Single Winner Election with
Voluntary Time Delay

Since there are no a priori knowledge which node is the best
candidate, each node will usually begin its election process
with some non-zero delay. This will create the absolute
delay, the initial period of inactivity where no nodes are
active, which increase the duration of the entire election
process. However, overhead reduction comes from the
differential delay, the amount of delay spread between the
best candidate and all other nodes. Increasing the delay
spread will, in general, increase the absolute delay as well.
Hence we have a overhead-delay trade-off. Properly
managing this overhead-delay trade-off will ensure the
cooperative processing is performed in an efficient as well
as timely manner.

Spanning Tree Computation

Because the ultimate goal of the election requires that each
sensor find a route to the winner(s) of the distributed
election, it is natural to piggyback routing information in the
Elect messages such that routing computation can be
performed simultaneously. The routing algorithm used in
our scheme computes a minimum-hop spanning tree
connecting each participating sensor to the winner(s) of the
election. Due to the similar characteristic in message
propagation between the election processes and a distributed
minimum hop spanning tree computation, no additional
complexity is added to the algorithm complexity except for
a slightly larger payload in each Elect message. This
approach ultimately shortens the duration of the entire
networkhouting algorithm and may also cut overhead by
compressing election and routing information into a single
message.

Election Termination

Another key component of the election process i s that the
winner of the election should be able to detect the end of the
election process. This allows the winning node to direct a
swift transition from the election process to the next phase
of the operation. For single winner election, a distributed
termination detection process can be implemented by using
a (N+l) state algorithm, where N is the number of
participating sensor nodes in the election.

Event: (A is true).and.(B Is true)
Action: Deciare state FINALU)

to ail neighbors ~ ~ ~ \ / ~ r ~ n ~ t ~ ~ n to
next phase
of operation

TENTATIVE jc (1,2,3 ... N)

Event: (A is fa/se).or.(B Is false)
Action: Declare state TENTATIVE

to ail neighbors

Condition A - Every 1-hop neighbor has chosen
the same candidate as oneself

Condition B - Each 1-hop neighbor who have hlgher
hop-distance according to the current
chosen candidate has declared to be in
state FINALU), where j is the Currently
chosen candidate

Figure 7: Termination Detection Algorithm

Each node starts the election process in state TENTATIVE.
When both condition A and B are satisfied, a node will enter
state FINALCj) - if currently the best candidate is node j. In
the case the node j enter FINALCj), the election has ended
and node j realize it has won the election. From this point
on, it can trigger other actions necessary for the next phase
of operation. Note that for condition B, the spanning tree
algorithm, which is executed simultaneously with the
election process, provides the knowledge regarding hop-
distance with respect to any chosen candidate. Each
neighbor will update each other of changes of state
information {TENTATIVE, FINALCj),j=1,2.. .N} by using the
Elect message, which as a “state” field in its payload. If the
election process is won by node j, eventually each node will
select node j as its candidate. Due to condition B, nodes that
are farther away from the winner will enter state FINALCj)
first and followed by those that are closer in hop-distance,
until eventually node j itself enters state FINALCj), which
ends the election process. Figure 8 illustrates this process
graphically.

The termination procedure for elections that produces
multiple winners is more complex to design due to the large
number of states and the difficulty of coordinating the
winners. To avoid this additional layer of complexity, we
use a passive method of detection; namely, we monitor the
Elect message traffic and allow each node to infer whether
the election has terminated. For example, a timer can track
the time elapsed since the last Elect message is received. If
sufficient time has elapsed without observing any further
message exchanges, then a node will declare the election
terminated and assume the candidate recorded in its registry
as the final winner. The time out must be carefully chosen to
balance the possibility of pre-mature election termination
and high latency.

Failure Recovery

When link or node failure occurs, the network may be
severed topologically and/or create invalid routes that
causes a deadlock in the election process. One remedy is to
have the data link or physical layer report such occurrence
and either execute a local recovery procedure or re-start the

entire election process. Another possibility is to use a timer
so that each sensor does not wait indefinitely for the process
to end. Some sort of reporting mechanism can also be used
to request instruction from a remote user when the election
process fails. In our simulation study, however, we will
ignore the effect of random link or node failures.

.
Fllld Fl”d U

Figure 8: Termination Detection

4. SIMULATION STUDY

In this section we describe a simulation study of the
networkhouting algorithm and explore the overhead,
latency, and scalability of the algorithm under different
scenarios.

Assumptions and Scenario Setup

In our simulation study, we made the following
assumptions:

1.

2.

At any time instance, there is only one event occurring
in the environment.
There are two types of signal source generated as the
result of an event:

a. Near-field Line-of-sight source (NL) - We assume
an event occurs at a random location in the near
field of a sensor network and that the received
signal is dominated by the line-of-sight component.
The average received signal strength at each sensor
is modeled by an inverse-square law based on the
distance between an event and a sensor such that
only sensor sufficiently close to the event center
will be activated. In our simulation, the average
received signal strength at 1 meter varies from 3dB
(2) to 17dB (50).

b. Strong Far-field Multi-path source (SFM) - We
assume a far-field event occurs such that the
received signal is dominated by the mulit-path
propagation component. Such events will generate
sufficiently strong signal to active most of the
sensors even though the source is far field. The
received signal strength at each sensor is modeled

by i.i.d. Raleigh random variables with mean value
of 50.

3. For NL sources, we use a fixed network of 99 nodes,
and the average network size is determined by the
number of sensors close enough to detect the event. For
sensors with received signal strength greater than the
threshold of 0.4, it will become active and participate in
cooperative signal processing.

4. For SFM sources, we received signal is sufficiently
strong to awaken most nodes in the sensor network
because the mean value is 50 while the threshold is
fixed at 0.4. We examine the performance of the
algorithm under different network sizes by varying the
number of sensor from 10 to 99 while keeping the node
density fixed.

We studies the following four scenarios:

1.
2.
3.
4.

Non-coherent processing with NL sources
Non-coherent processing with SFM sources
Coherent processing with NL sources
Coherent processing with SFM sources

For non-coherent processing, received signal strength is
used as the election metric for choosing the central
processing node. We choose this particular election metric
because it serves as an general indicator of the likelihood
that it will be in close proximity to the signal source, and
therefore in a good location to gather sensor data from other
sensors observing the same phenomenon.

For coherent processing, the election metric for selecting
data source nodes is the received signal strength, which
serves as a proxy for data quality. Data set from each sensor
has random length, and a maximum of 5 sensors will be
selected to provide the raw data. For the central processing
node, total energy cost for relay data the sensor is the
election metric. The transition from the first election to the
second election uses a timer scheme that incurs a fixed extra
latency of 20 simulation time units.

Data LinWMAC Layer

We use a simple model for the data link layer. We assume
that a contention-free TDM-like MAC schedule exists and
error-free transmissions. Each transmission will incur
average frame latency of 1 simulation time unit and have the
same energy consumption.

Voluntary Time Delay and Election Metric Calculation

The voluntary time delay as a function of received signal
strength is an inverse function given by,

where S represents the received signal strength and Do is a
coefficient. Since the goal of imposing delay is to favor
those with larger S, D (S) is an inverse function. The
voluntary delay for coherent case is computed as a result of
the relay energy cost (represented by the number of
transmissions to relay all selected sensor data to node j) is
given by:

(4) D (E j) = Do - Ei
Emax

Since the goal is to reduce the energy cost, the delay
imposed is proportional to the energy cost. E j is the total
number of transmission required to relay all sensor data to
node j . It is given by Lidi* where L, is the number of

packets node i has to send, and di,i is the hop-distance
from node i to j . SN is the set of sensors that have been
selected to provide the raw data for the coherent combining.

ic SN

Simulation Results

Figure 9 shows the overhead-delay trade-off of our
algorithm for non-coherent processing.

NL Sources, Do = 0,5,10,20,50

+size = 3.51
+ size = 6.44

0 10 20 30 40 50 60 70 EO 90

Total Delay

SFM sources, Average Signal Strength = 50
DO = 0,..,500

3500

0 z

2500

2000

1500

1000

500

a
0 20 40 60 80

Total Delay

Do D (S) = -
S

(3)
Figure 9: Delay-energy Trade-off for Non-coherent

Processing

The first observation we can make is that for SFM sources
the overhead reduction is more gradual as delay increases;
while for NL sources the trade-off is stronger, and the
overhead reaches its minimum quicker.

NL Sources

30 T I

+DO = 20

0

35

2 30
0
x 25
0)

w
g 20

5 10

$ 5

3! l5

0

5 10 15 20 25
Local Network Size

SFM Source

i+Do=O

Figure 10: Scalability for Non-Coherent Processing

Figure 10 illustrates a key difference in scalability for NL
and SFh4 sources. We can see that for NL source, the non-
coherent process is very scalable (nearly flat average energy
cost for each node with respect to network size) except
when no voluntary delay is imposed. While for SFM
sources, the algorithm shows only slow and gradual
improvement in scalability as the delay coefficient Do
increases. One possible explanation for this difference is
that for NL sources the most competitive candidates, those
with highest received signal strengths, tend to cluster in
close proximity. Therefore small differential delays will
give the best candidate sufficient head start over other
strong competitors. For SFM sources, nodes that have
comparable received signal strengths are more spread out
due to multi-path signal propagation. Therefore longer delay
is required to suppress message exchanges initiated by
losing candidates.

Figure 11 and Figure 12, shows the overhead, latency and
scalability of the algorithm for coherent processing. In this
case, the scalability is still better with NL sources. However,
the overhead-delay trade-off for SFM sources is much
weaker than the non-coherent case. This means one must be
willing to tolerate very long delay in order to minimize
overhead. The average energy cost is in general higher than
the non-coherent case because it requires two distributed
elections. Although the networkhouting algorithm for

coherent case has higher overhead and delay than its non-
coherent counterpart, the less-scalable algorithm will
generate significant performance pay-off by finding the
optimal central node and routing paths to relay large volume
of sensor data. Therefore saving energy in the long run. In
reality, it is difficult to compare the relative merit of the
algorithm under the coherent and non-coherent cases
because the underlying traffic characteristics for these two
types of processing are inherently different.

NL Sources , Do = 0,5,10,20,50

-1000 1 i

.o 800 - -

0 E 600 - -
2 .D
si:

400 - -
w z
0 200 - -
z

0 1 - _ _ _ - - _ _ _ - - _ _ _
-t- size = 6.44

+size = 21.12

0 50 100 150
Total Delay

SFM Sources, Do = 0 - 500

10 100 1000 10000
Total Delay

Figure 1 1: Delay-energy Trade-off for Coherent Processing

5 . CONCLUSION
In this paper, we have described a networkhouting
algorithm that facilitates adaptive event-driven cooperative
signal processing applications in sensor network. We
explored the inherent overhead-delay trade-offs and
scalability of this algorithm under both coherent and non-
coherent cases where the target signal is dominated by either
a line-of-sight or multipath mode of signal propagation. We
conclude that for non-coherent scenario, our algorithm is
very scalable and has low latency. For coherent processing,
we achieved the objective of finding a central processing
node such that the energy cost of relaying raw data can be
minimized at the expense of higher algorithm complexity,
latency, and lower scalability.

NL Sources

1

5 70 -
:SO -

g 5 0 -

1 5 4 0 -

$30 -

2 20 t - +DO = 0

+DO = 10
++DO = 20

Jay L. Gao is a research staff
with the Communication
Systems and Research Section
of the Jet Propulsion
Laboratory. He is currently
working on protocol
development and performance
evaluation for in-situ surface-
to-surface and surface-to-orbit
communications in planetary
missions, as well as developing
energy eftcient network and routing protocols for sensor
networks. He received his B.S., M.S., and Ph.D. in
Electrical Engineering from UCLA in 1993, 1995, and
2000, respectively.

SFM Sources

120 1

100-
0

$i 80-
E

f

w 60 -

4 0 -

+DO= 10

+DO = 100
+DO = 200

0 20 40 60 80 100
Network Size

Figure 12: Scalability for Coherent Processing

REFERENCE
J. Gao, K. Sohrabi, V. Ailawadhi, and G. Pottie,
“Protocols for Self-organization of a Wireless Sensor
Network,” IEEE Personal Communications Magazine,
October 2000.
E. W. Dijkstra and C.S. Scholten, “Termination detection
for Diffusing Computations,” Information Processing
Letters, vol. 11, no.1, 1-4, August 1980.
K. Yao, R.E. Hudson, C.W. Reed, D. Chen, and F.
Lorenzelli, “Blind Beam-forming on a Randomly
Distributed Sensor h a y System,” IEEE Journal On
Selected Areas in Communications, vol. 16, no. 8, 1555-
67, October 1998.
K. Scott, “Control and Routing in Self-organizing
Wireless Networks,” Ph. D. Dissertation, Department of
Electrical Engineering, UCLA, 61-76, 1997.
S. Singh, M. Woo, C.S. Raghavendra, “Power-Aware
Routing in Mobile Ad Hoc Networks,” MOBICOM’98,
181-190, Dallas, TX.
V. Rodoplu and T.H. Meng, “Minimum energy mobile
wireless networks,” IEEE Journal on Selected Areas in
Communications, vol. 17, no. 8, 1333-1344, August 1999.

