
Anytime Query-Tuned Kernel Machine
Classifiers Via Cholesky Factorization

Dennis DeCoste
Machine Learning Systems Group

Jet Propulsion Laboratory / California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109, USA

dennis . decoste@jpl.nasa.gov

Abstract

We recently demonstrated 2 to 64-fold query-time speedups of Sup-
port Vector Machine and Kernel Fisher classifiers via a new com-
putational geometry method for anytime output bounds (DeCoste,
2002). This new paper refines our approach in two key ways. First,
we introduce a simple linear algebra formulation based on Cholesky
factorization, yielding simpler equations and lower computational
overhead. Second, this new formulation suggests new methods for
achieving additional speedups, including tuning on query samples.
We demonstrate effectiveness on benchmark datasets.

.

1 Introduction

Support vector machines (SVMs) and other kernel methods have shown much recent
promise (Scholkopf & Smola, 2002). However, wide-spread use on large-scale tasks
remains hindered by query-time costs often much higher than others, such as deci-
sion trees and neural networks. For example, an SVM recently achieved the lowest
error rates on the MNIST benchmark digit recognition task (DeCoste & Scholkopf,
2002), but classified much more slowly than the previous best (a neural network),
due to many SVs for each digit recognizer (around 20,000). It is also troubling that
classification costs are identical for each query example, e v e n for “easy” examples
that other methods (e.g. decision trees) can classify relatively quickly.

We recently demonstrated 2 to 64fold query-time speedups of Support Vector Ma-
chine and Kernel Fisher Discriminant classifiers based on a new computational
geometry method for anytime output bounds (DeCoste, 2002). Unlike related ap-
proximation methods such as “reduced sets” (eg. (Burges, 1996; Scholkopf et al.,
1999; Scholkopf et al., 1998; Burges & Scholkopf, 1997; Romdhani et al., 2001)),
our approach guarantees preservation of all classifications of the original kernel ma-
chine. Furthermore, unlike related “exact simplification” methods (Downs et al.,
2001) we also achieve “proportionality to difficulty” - our classification time tends
to be inversely proportional to a query’s distance from the discriminant hyperplane.

This new paper improves upon (DeCoste, 2002) in two key ways. First, Section 3
introduces a simple linear algebra formulation based on Cholesky factorization,

mailto:decoste@jpl.nasa.gov

giving simpler equations and lower computational overhead. Second, Section 4
develops new methods that exploit this formulation, giving additional speedups,
including tuning for query samples. Section 5 demonstrates on benchmark datasets.

2 Brief Review of Kernel Machines

This section reviews key kernel machine terminology. For concreteness, but without
loss of generality, we do so in terms of one common case (binary SVMs).
Given a d-by-n data matrix (X) , an n-by-1 labels vector (y), a kernel function (K) ,
and a regularization scalar (C), a binary SVM classifier is trained by optimizing an
n-by-1 weighting vector CY to satisfy the Quadratic Programming (QP) dual form:

minimize: xTj=, c r i a j y i y j ~ (~ i , x,) - zpZl ai
subject to: o 5 ai 5 C, a i y i 0,

where n is the number of training examples and yi is the label ($1 for positive
example, -1 for negative) for the i-th d-dimensional training example (X i) .

The kernel avoids the curse of dimensionality by implicitly projecting any two d-
dimensional example vectors in input space (X i , Xj) into (possibly infinite) feature
space vectors (@ (X i) , @ (X j)) and returns their dot product in that feature space:

K (X 2 , X,) 2 @ (X i) . @ (X j) .

linear: K(u , w) = u . 2, =: U'W uiwi,
polynomial:
RBF: ~ (u , w) = e x p (w) ,
normalized:

(1)
Popular kernels (with model selection parameters a, p , 0) include:

d

K (u , w) = (u . w + u)P,

K(u , w) = G(u, u)G(u, ~) - ; G (v , w)-;., for any given kernel G.
The output f (x) on any query example x , for any kernel machine with trained
weighting vector p, is defined (for suitable scalar bias b also determined during
training) as a simple dot product in kernel feature space:

n
f(z) = W. Q - b, W = cDi@(xi), Q a(.). (2)

i=l

Assume (without loss of generality) that only the first m (m 5 n) columns of X
have non-zero pi. Output f(x) is traditionally computed in O(m) time via:

m m

For example, a binary SVM (of m SVs) has pi = yiai and classifies x as sign(f(z)).

3 Anytime Output Bounds via Cholesky Factorization

This section reformulates the complex computational geometry method of (DeCoste,
2002) as a simpler linear algebra approach having lower computational overhead.

Our basic idea is to efficiently embed the (implicit) feature space points Q and W
of (2) into explicit , but typically short (k << m), k-dimensional vectors Q (k) and
W (k) , such that we can approximate (3) in only O(k) time via:

f k (x) = W (k) . Q (k) - b M W.Q- b f(~). (4)
'Where the 2-norm is defined as IIu - u/I2 E u . u - 2 u . TJ + li'. TJ.

However, in contrast to similar “reduced set” approximations (e.g. (Burges, 1996)),
we also determine tight bounds for any size-k embeddings W (k) and Q(k):

Lk(2) = fiE(x) - gaPk(S) 5 f(z) I fk(Z) + gaPk(z) = Hk(%), (5)
by computing (via (23) later) a key quantity gap,(z) 2 0 at query-time, having the
convergence property that

These bounds enable us to aggressively speedup classification, by exploiting “pro-
portionality to difficulty” while preserving all classifications of the original kernel
machine. In an anytime manner, for each query 2, we will consider progressively
larger k until sign(Lk(x)) = sign(Rk(z)).

(x) < gap, (2) until (z) = gap, (x) = 0.

3.1

In this section we show how to pre-compute once, the embedding of W, which enables
efficient query-time computation of gap, (x) in the following two sections. Assume
we are given a matrix Z representing an ordered sequence of n z (nz 5 n) d-
dimensional column vectors Zi. For example, Section 4 discusses how to produce
good Z via a (greedy) ordering of the original training data X .

First, compute the nz-by-nz matrix KZZ, nz-by-1 vector KZW, and scalar KWW:

Stage 1 (pre-query-time): Embed W

Kzz(i, j) = +(Zi) . @(Zj) = K(Zi, Z j) (1 5 i, j 5 nz) , (6)
m m

KZw(i) = @(Zi) . $@(Xi) = $K(Zi ,Xj) (1 i I nz) , (7)
j=1 j=1

where P are the kernel machine’s trained weights over X and, for numeric stability,
we use normalization scalar:

m

i= 1

(otherwise, K w w would scale with m whereas Kzz(i, j) do not).

Second, combine them all into one composite kernel matrix:

Finally, we embed all n z + 1 of these kernel space points (Le. all Zi @(&) and W)
into n z + 1 dimensions. To compute the (nz + 1)-by-(nz + 1) embedding matrix
V, we simply use Cholesky factorization: -1
Table 1 illustrates the resulting upper-triangular embedding matrix (i.e. when
k=nz). Specifically, V is the upper-leftmost (k + 1)-by-(k + 1) portion. For nota-
tional simplicity, we define W = s Vnz+l , so that Wd clearly refers to the i-th
coordinate of W’s embedding (i.e. Wi 5 s . V(nz+l),i).
-

Note that at any step k the dot product of any two columns of the embedding
matrix of Table 1 is equal to the kernel value for those two points, by the nature of

21n practice, we add a small E = lo-’ to IC’s diagonal, ensuring positive-definiteness
even when W is a linear combination over 2 (e.g. if 2 contains the same vectors as X) .

the Cholesky factorization. E.g. $ W . SW = Kww and V , . V, = K(Zi , Zj). Thus,
we also pre-compute the following quantities as well (for use in Stage 3):

Note that W Z (k) = 0 occurs whenever Z L , . . . , Zk provides a complete basis function
set for W (e.g. if Z = X this always occurs for some k 5 m).

Table 1: Embedding matrix of k + 2 points at step k .

3.2

In principle, 9's embedding could, similarly to W above, be computed as the last
column of U in the Cholesky factorization KQ = U'U, via extended kernel matrix:

Stage 2 (query-time): Embed Q

computed from the nz-by-1 matrix K ~ Q , scalar KWQ, and scalar KQQ:

m m

However, comparing (14) with (3) shows that f(x) = KWQ - b. Thus, computing
KWQ would amount to the expensive traditional exact computation of output f (x)
that we are trying to avoid whenever possible.

Instead, we use only the equations from the Cholesky factorization that compute
as much of the embedding of Q that we can without requiring KWQ. In particular,
at each step k we compute the Cholesky equation for one new coordinate of Q:

4 s Table 1 notes, only two coordinates, Qy(k) and & * (I C) , then remain unknown.

3Note that being positive-definite ensures that V k , k > 0.

3.3 Stage 3 (query-time): Bound f(z) via Closed-Form Optimization

At step k, given Q k from (16), we first reformulate (4) as an incremental update:

where the relation between exact output f(z) and approximation fk(z) is:

Fk(z) f f k (z) + Wv(k)Qy(k) + wz(k)Qz(k), f(z) = F , (z) (1 I k I n ~) . (18)

Second, we incrementally update the remaining “residual” in 9:

which constrains the two remaining (unknown) coordinates (since Q . Q E K (s , 2)):

= &;(IC) + Q:(k). (20)

Third, we solve (18) with (20) for M- = 0 and a = 0, obtaining the values
of Q g (k) and Q Z (k) at the extrema of Fk(2):

Finally, we get bounds Lk(z) and Hk(z) at step k for the output f(z) of query x:

by plugging (21) into (18) for both extrema of Fk(z) .

3.4 Anytime Classification

For each query 2, we repeat Stages 2 and 3 over steps k = 1, ..., nz, until
sign(Lk(z)) = sign(Hk(z)). Due to the nature of our incremental embedding, most
embedding coordinates in W and Q persist between steps:

Qi(k+l) = Q i (k) (1 I i 5 k), Wj(k+l) = Wj(k) (1 5 j 5 k+2). (24)
Table 1 uses gray backgrounds to highlight the three coordinates not persisting (Le.
WZ(k), Q,(k) , and QZ(k)). Wz(k) is precomputed as in (l l) , while Qv(k) and Q z (k)
are never computed (Le. bound by computing extrema Q,,(k) amd Q Z * (k)) .

Computing Qk via (16) dominates the time cost of each step k. It requires one O(d)
kernel (K (Z k , 2)) and O(k - 1) summation over previous Q coordinates. Thus,
k steps require O(k d + k 2) time, whereas exact f(z) always requires O(d. m).
So, whenever k > min(m, f i) occurs before sign(Lk(z)) = sign(Hk(z)) occurs
for query z, it becomes advisable to switch to computing f(z) directly (via (3)).
Fortunately, empirical evidence suggests this seldom occurs in practice, particularly
for the common case of m > d in large applications. Typical time overhead per
query-time step k is under 25% of a kernel computation, via efficient coding tricks.

= Wy(k) + &W,(k)[R;(z) - Q i (k)] - i [- 2 Q y (k)] + 4Plug (20) into (18): 0 =

4 Greedy Selection of 2 From X (and Query Samples)

Simple, yet effective, sequences of Zi’s can be determined by greedily ordering the
columns of X. In (DeCoste, 2002) we simply ordered the columns using Sparse
Greedy Matrix Approximation (SGMA) (Smola & Scholkopf, 2000). Our new
Cholesky-based approach suggests the following better alternatives.

First, consider greedy search over k = 1, , . . , m, with iteration k selecting the next
best column zk E X . We select the candidate Xi (1 <_ i 5 m) which minimizes:

C O S t k (Z k = Xi) = W,(k), (25)
where W z (k) is computed as in (ll), using a simple rank-1 Cholesky factorization
update of our embedding V (since the new candidate (Xi) for 2, extends IC (of
(10)) by rank-1). This cost is proportional to the approximat.ion error between !d
and its embedding TIV(k), yielding Zi sequences essentially equivalent to reduced set
search (e.g. (Burges, 1996)) results over the same candidates.

This approach (call it minWz) improves upon our earlier use of SGMA in (DeCoste,
2002). The existence of well-tuned Cholesky factorization code (e.g. MATLAB)
makes our computation of cost W, (k) particularly efficient, enabling search over
more candidates at each iteration k than our previous SGMA approach. Further-
more, our use of SGMA approximated matrix K ~ z , whereas our bounds tighten
quickest with better approximations of W (which occurs when W, (k) is minimized).

Second, we find that using all n training examples (X) , instead of just the m SVs,
as candidates for 21, often helps. Often a non-SV provides a better (e.g. more
orthogonal) basis function than multiple SVs. We refer t,o this cost as costk(Zk =

= W,(k) and ordering based on it as minWzn. Since n is often much larger
than m for SVMs, we limit search cost by employing the “59-trick” of (Smola
& Scholkopf, 2000)) considering at most 59 randomly-selected non-SVs at every
iteration I C , in additional t o all unchosen SVs.
Third, given a sample set of representative queries (Q), we can do even better.
Consider the same greedy ordering search over X as above, but with a new cost:

C O S t k (Z k = x p , e) = max(Hk(x),O) - min(Lk(x),O) (26)

where Q- 3 {x E Q : f(x) < 0) and Q+ E {x E Q : f(x) > 0). That is, we
optimize the sequence of Zi’s to encourage the lower bounds to rapidly raise (across
k) , until above 0, for query samples classified as positive by the kernel machine,
while similarly encouraging the upper bound to drop (for negative queries). This
method (call it meanLHn) is motivated by the fact that correct classification only
requires the correct sign.

In the extreme singleton case of Q = {Xi}, this meanLHn yields 2 1 = Xi. In general,
optimizing with costk(21, = Xi, Q) over a large representative Q explicitly moves
us towards our ultimate goal: classifying future queries with the lowest expected k .

Unfortunately, we observe that query-ignorant minWzn often produces Zi orderings
yielding much higher classification speedups than query-tuned meanLHn does, when
used for the entire Z ordering. However, we find that meanLHn provides an excellent
tie-breaker, for selecting among candidates for zk which have similar minWz cost.

This hybrid (call it minWzn&meanLHn) balances meanLHn’s greed to exploit the
sufficiency of classification signs against minWzn’s typically less aggressive but steady
improvements. Other hybrids are likely even better and worthy of future research.

51n our experiments: “ties” are candidates with minWz cost within 1% of the best.

z € & - Z € Q +

5 Examples

We checked our approach on two UCI datasets (Blake & Merz, 1998), Sonar and
Haberman, and the MNIST digit-recognition dataset (LeCun, 2000). We confirmed
that L~(z) 5 f(x) 5 Hk(z) always held. Table 2 summarizes some of our results.

Rows labelled 1-2 summarize input dimension and number of positive and negative
examples for each dataset. Rows 3-6 summarize the trained SVMs for each.

Row 11 shows statistics on how many steps k were required to classify (i.e. determine
sign(f(z))) for all n examples, where the Zi are simply the SVs in the original order
given in each dataset. Row 12 computes speedup relative to exact classification, as
the ratio of the number of SVs (m) vs the mean k required (e.g. 165/47.7 = 3.5).
Successive pairs of rows give similar statistics for other ordering methods.

(DeCoste, 2002) also examined Sonar and Haberman, using SGMA ordering, giving
mean k of 26.2 and 4.5, respectively. In contrast, m i n k ordering gives 21.3 (better)
and 7.0 (worse), respectively. Poor behavior on Haberman (versus both SGMA
ordering and even unordered) is corrected using minWzn&meanLHn. In Haberman
many candidates give similar minWz costs, making the greedy search very noisy.
Comparing across rows 32 versus 42 shows that hybrid minWzn&meanLHn overcomes
such problematic cases, while not suffering significant degradation in other cases.

We tried both an easy (0 vs 1) and a hard (3 vs 8) MNIST pairwise classification
task, using the small 10,000 digit MNIST dataset. minWzn&meanLHn achieved sig-
nificant average speedup for the easy task, which is impressive given MNIST’s high
dimensionality (d = 784). For the hard task, the speedup was relatively small (1.7).
We suspect that speedups for hard cases such as MNIST(3vs8) will require more
clever partitioning of query space, such as using different Zi sequences for different
clusters, instead of using one global sequence as in our current methods.

Table 2: SVM classification speedups summary.

6We also observe that non-SVM kernel machines such as Kernel Fisher Discriminants,
where usually all /?i # 0, often enjoy even greater speedups (not shown due to space limits).

6 Discussion

(DeCoste, 2002) explored various motivations and applications of anytime out-
put bounding. Such bounding applies to any kernel machine of the form f(z) = xi piK(Xi ,x) - b. Below, we discuss insights suggested by our new improvements.

This work shows that reducing the error in approximating a kernel machine (as
is the focus of previous reduced set (e.g. (Burges, 1996)) work) is not the only
viable way to speedup classification. Our approach makes explicit that Fk(z) -+
f (x) convergence (as step k increases) actually depends on either the machine’s
W residual Wz(k) t 0 or the query’s Q residual &(Z) -+ 0, whichever is faster.
The approximated output Fk(x) for a given query x is increased (decreased) by
the product (wk . Qk) between the embedding coordinates of W and Q , if they are
the same (different) sign. Yet, classification tasks do not necessarily care if the
approximate output is too high (low) for a positive (negative) query, so long as we
know the uncertainty (Le. our gapk(z)) sufficient to tell us the sign of the output.

These insights suggest new costs (e.g. (26)) and methods (e.g. minWzn&meanLHn)
to exploit them. This paper only begins to explore the many possibilities opened
up by this work. In particular, we suspect that recursive partitioning of the query
space, via tree structures, might allow our approach to provide significant further
speedups (such as exploiting the existence of clusters in the expected query space).

Other promising directions that we are investigating include: optimizing over vec-
tors in !I? d to obtain more optimal Zi vectors (i.e. reduced set search, but using our
new cost functions) and using anytime bounding during training itself (to speedup
the KKT condition checks that dominate training times for many huge datasets).

Acknowledgments

Dominic Mazzoni and Michael Turmon provided useful feedback. This research was
carried out by the Jet Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space Administration.

References

Blake, C., & Merz, C. (1998). UCI repository of machine learning databases.
Burges, C. (1996). Simplified support vector decision rules. Intl. Conf. on Machine

Learning (ICML).

Burges, C., & Scholkopf, B. (1997). Improving the accuracy and speed of support
vector machines. NIPS.

DeCoste, D. (2002). Anytime interval-valued outputs for kernel machines:
Fast support vector machine classification via distance geometry. ICML.
http://citeseer.nj.nec.com/decosteO2anytime.html.

DeCoste, D., & Scholkopf, B. (2002). Training invariant SVMs. Machine Learning,

Downs, T., Gates, K., & Masters, A. (2001). Exact simplification of support vector

LeCun, Y. (2000). MNIST handwritten digits dataset. Available at

Romdhani, S., Torr, P., Scholkopf, B., & Blake, A. (2001). Computationally efficient

4 6.

solutions. Journal of Machine Learning Research (JMLR), 2, 293-297.

http: / / www .r esearch. att . com/ -yann / ocr / mnist / .

face detection. Intl. Conf. on Computer Vision (ICCV-2001).

http://citeseer.nj.nec.com/decosteO2anytime.html

Scholkopf, B., Knirsch, P., Smola, A., & Burges, C. (1998). Fast approximation
of support vector kernel expansions, and an interpretation of clustering as ap-
proximation in feature spaces. Mustererkennung 1998 - 20. DAGM-Symposium.
Springer.

Scholkopf, B., Mika, S . , Burges, C., Knirsch, P., Muller, K.-R., Ratsch, G., &
Smola, A. (1999). Input space vs. feature space in kernel-based methods. IEEE
Transactions on Neural Networks, 10.

Scholkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge, MA: MIT
Press.

Smola, A., & Scholkopf, B. (2000). Sparse greedy matrix approximation for machine
learning. ICML.

