JPL Technical Report Server

Demonstrating Assurance of Model-Based Fault Diagnosis Systems on an Operational Mission

Show simple item record

dc.contributor.author Nikora, Allen
dc.contributor.author Aleem, Mishaal
dc.contributor.author Mackey, Ryan
dc.contributor.author Fesq, Lorraine
dc.contributor.author Chung, Seung
dc.contributor.author Kolcio, Ksenia
dc.contributor.author Prather, Maurice
dc.contributor.author Litke Matthew
dc.date.accessioned 2021-10-14T13:26:30Z
dc.date.available 2021-10-14T13:26:30Z
dc.date.issued 2020-03-07
dc.identifier.citation 2020 IEEE Aerospace Conference, Big Sky, Montana, March 7-14, 2020
dc.identifier.clearanceno CL#20-0132
dc.identifier.uri http://hdl.handle.net/2014/52259
dc.description.abstract Developers of robotic scientific and commercial spacecraft are trending towards use of onboard autonomous capabilities for responding quickly to dynamic environments and rapidly changing situations. These capabilities need to know the state of the spacecraft’s health. Model-based fault diagnosis (MBFD) is an approach to estimating health by continuously verifying accurate behavior and diagnosing off-nominal behavior. Proper functioning of MBFD depends on 1) the quality of the diagnostic system model that is analyzed and compared to commands and onboard measurements to estimate a system’s health state, and 2) the correct functionality of the diagnosis engine interrogating the model and comparing its analyses to observed system behavior. Our goal is to develop Verification and Validation (V&V) techniques for MBFD to provide future missions sufficient confidence in its functionality and performance to deploy it on the systems they develop. Our work has been focused on infusing the techniques we developed earlier to an operational mission. First, we are constructing diagnostic models of a spacecraft attitude control system and updating our diagnostic engine so they can be demonstrated aboard the Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA) mission, an operational spacecraft for which experiments in autonomy are being planned and executed, using the V&V techniques we have previously developed to assure they are both correct and complete. Since it is nearing the end of its life, ASTERIA provides a unique opportunity to demonstrate MBFD since the monitored components are expected to fail. Our demonstration will give system developers additional confidence to make timely, informed MBFD deployment decisions. Second, we will be completing performance assessments of the diagnostic engine/diagnostic model ensemble both on the flight system and ground-based testbeds to gain confidence in MBFD’s ability to run successfully in a spacecraft’s resource-constrained environment without adversely affecting other on-board activities. Finally, we are capturing our experience in preparing this demonstration in a set of checklists and guidance documents. Current practice includes high-level institutional guidance documents and standards, but at a high level of abstraction that does not necessarily address specific MBFD concerns. The purpose of the new checklists is to provide future mission developers clear, unambiguous, procedure-oriented guidance on assuring MBFD. This paper describes our work in these areas. For the first area, we describe the diagnostic models and updated diagnostic engine that will be used for the on-board demonstration. We describe how the V&V techniques we developed earlier are used to assure model and engine correctness and completeness. For the second area, we identify the performance measurement and assessment techniques used to characterize the diagnostic engine and diagnostic models, and discuss the effect of measured performance on overall mission operation. Finally, we present the checklist and guidance documents and describe how they meet the goals of providing system developers with clear, unambiguous, procedure-oriented guidance on MBFD assurance. We show how the techniques we have developed map into those artifacts.
dc.description.sponsorship NASA/JPL en_US
dc.language.iso en_US
dc.publisher Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2020
dc.title Demonstrating Assurance of Model-Based Fault Diagnosis Systems on an Operational Mission
dc.type Preprint


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search


Browse

My Account