JPL Technical Report Server

Mars Cube One (MarCO) shifting the paradigm in relay deep space operations

Show simple item record

dc.contributor.author Asmar, Sami
dc.contributor.author Matousek, Steve
dc.date.accessioned 2019-05-15T22:33:40Z
dc.date.available 2019-05-15T22:33:40Z
dc.date.issued 2016-05-16
dc.identifier.citation SpaceOps 2016 Conference, Daejeon, Korea, May 16-20, 2016 en_US
dc.identifier.clearanceno 16-1674
dc.identifier.uri http://hdl.handle.net/2014/46093
dc.description.abstract A very significant challenge in the planetary mission design and operations is communications with ground control teams during critical events and highly risky maneuvers. These include entry, descent, and landing (EDL) and orbit insertion, which should not be carried out in the blind. Although vast planetary distances and long round-trip light times disallow real-time intervention from controllers, acquiring the relevant event performance parameters in near real-time can be imperative for determining the corrective actions needed immediately following or, in the case of significant anomalies, aid in the diagnostic analysis. During several previous Mars missions landing events, and the Huygens probe landing on Titan, the communications strategy relied on proximity links to planetary orbiters, which then relayed the data to the Deep Space Network (DSN). In addition, attempts were successfully made in parallel to receive the signal carrier directly at Earth often using large radio telescopes when the wavelength was outside the DSN’s reception bands. This Direct-to-Earth (DTE) back-up method was only possible due to special techniques utilizing the DSN’s open-loop Radio Science Receivers. In every case, it was very challenging since the link budget of a landing vehicles were designed for proximity orbiter relays and not for distances across the solar system. A new method is introduced since not all future missions can rely on the presence of pre-existing orbiters at their planetary targets to relay their critical data ad, furthermore, most missions would not likely have the resources to implement a reliable DTE link at acceptable data rates, bypassing a need for a relay asset. With the advent CubeSat form-factor spacecraft, one or more, for added reliability, CubeSats can be launched with the primary mission, travel to the target, and be positioned to view the critical event, such as EDL, and carry out real-time relay of the data to the DSN at higher rates. CubeSats have flown in the Earth environment but never flown or been operated in deep space or planetary environment so careful design as well as flight experience are needed. The relay function requires the development of radio and antenna systems to meet challenging specifications. After initial technical demonstration of the concept and operational experience, the cost can decrease as systems become more standardized with increased reliability. This paper describes the invention of the “carry your own relay” concept and the formulation of the mission likely to be the first planetary CubeSat mission called Mars Cube One (MarCO). It also describes the operational concept of relay small spacecraft and their role reducing mission risk as well as overall mission cost. en_US
dc.description.sponsorship NASA/JPL en_US
dc.language.iso en_US en_US
dc.publisher Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2016 en_US
dc.title Mars Cube One (MarCO) shifting the paradigm in relay deep space operations en_US
dc.type Preprint en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search


Browse

My Account