JavaScript is disabled for your browser. Some features of this site may not work without it.
Optical studies on antimonide superlattice infrared detector material
Hoglund, Linda; Soibel, Alexander; Hill, Cory J.; Ting, David Z.; Khoshakhlagh, Arezou; Liao, Anna; Keo, Sam; Lee, Michael C.; Nguyen, Jean; Mumolo, Jason M.; Gunapala, Sarath D.
Publisher:Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2010
Citation:SPIE Optics and Photonics, San Diego, California, August 1-5, 2010
Abstract:
In this study the material quality and optical properties of type II InAs/GaSb superlattices are investigated using transmission and photoluminescence (PL) spectroscopy. The influence of the material quality on the intensity of the luminescence and on the electrical properties of the detectors is studied and a good correlation between the photodetector current-voltage (IV) characteristics and the PL intensity is observed. Studies of the temperature dependence of the PL reveal that Shockley-Read-Hall processes are limiting the minority carrier lifetime in both the mid-IR wavelength and the long-IR wavelength detector material studied. These results demonstrate that PL spectroscopy is a valuable tool for optimization of infrared detectors.