Properties of the lunar interior : preliminary results from the GRAIL Mission
Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.; Wieczorek, Mark A.; Zuber, Maria T.; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; McGovern, Patrick J.; Nimmo, Francis; Taylor, G. Jeffrey; Weber, Renee C.; Boggs, D. H.; Goossens, Sander J.; Kruizinga, Gerhard L.; Mazarico, Erwan; Park, Ryan S.; Yuan, Dah-Ning
Date:
2013-03-17
Keywords:
Gravity Recovery and Interior Laboratory (GRAIL); moon gravity; lunar gravity
Publisher:
Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2013
Citation:
44th Lunar and Planetary Science Conference (LPSC 2013), Woodlands, Texas, March, 18–22, 2013
Abstract:
The Gravity Recovery and Interior Laboratory (GRAIL) mission [1] has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field [2,3] while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon’s interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k2. Lunar structure includes a thin crust, a thick mantle layer, a fluid outer core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future, we will search for evidence of tidal dissipation and a solid inner core using GRAIL data.
Show full item record
Items in TRS are protected by copyright, but are furnished with U.S. government purpose use rights.