Abstract:
The Space Interferometry Mission (SIM), scheduled for launch in early 2010, is an optical interferometer that will perform narrow angle and global wide angle astrometry with unprecedented accuracy, providing differential position accuracies of 1uas, and 4uas global accuracies in position, proper motion and parallax. SIM astrometric measurements are synthesized from pathlength delay measurements provided by three Michelson-type, white light interferometers. Two of the interferometers are used for making precise measurements of variations in the spacecraft attitude, while the third interferometer performs the science measurement. The ultimate performance of SIM relies on a combination of precise fringe measurements of the interfered starlight with picometer class relative distance measurements made between a set of fiducials that define the interferometer baseline vectors. The focus of the present paper is on the development and analysis of algorithms for accurate white light fringe estimation, and on the preliminary validation of these algorithms on the Micro-Arcsecond Testbed (MAM).