dc.contributor.author |
Angelova, Anelia |
|
dc.contributor.author |
Howard, Andrew |
|
dc.contributor.author |
Matthies, Larry |
|
dc.contributor.author |
Tang, Benyang |
|
dc.contributor.author |
Turmon, Michael |
|
dc.contributor.author |
Mjolsness, Eric |
|
dc.date.accessioned |
2006-02-13T21:43:36Z |
|
dc.date.available |
2006-02-13T21:43:36Z |
|
dc.date.issued |
2005-12 |
|
dc.identifier.citation |
Neural Information Processing Systems, Vancouver, Canada, December 8-12, 2005 |
en |
dc.identifier.clearanceno |
05-3730 |
|
dc.identifier.uri |
http://hdl.handle.net/2014/38551 |
|
dc.description.abstract |
Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter. |
en |
dc.description.sponsorship |
NASA |
en |
dc.format.extent |
961255 bytes |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en_US |
en |
dc.publisher |
Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2005. |
en |
dc.subject |
robotics |
en |
dc.subject |
navigation |
en |
dc.subject |
learning |
en |
dc.title |
Learning for autonomous navigation |
en |
dc.type |
Preprint |
en |