dc.contributor.author |
Kordon, Mark |
|
dc.contributor.author |
Klimick, Gerhard |
|
dc.contributor.author |
Hanks, David |
|
dc.contributor.author |
Hua, Hook |
|
dc.date.accessioned |
2006-01-27T18:24:22Z |
|
dc.date.available |
2006-01-27T18:24:22Z |
|
dc.date.issued |
2004-03-10 |
|
dc.identifier.citation |
2004 IEEE Aerospace Conference, Big Sky, Montana, March 10, 2004. |
en |
dc.identifier.clearanceno |
04-0708 |
|
dc.identifier.uri |
http://hdl.handle.net/2014/38392 |
|
dc.description.abstract |
Multi-objective optimization involves finding one or more optimal solutions when there is more than one conflicting objective. This means that a solution that is better in one objective compromises or trades-off, other objectives. Trade Studies are conducted by flight projects to create mission concepts with different trade-off solutions for mass, cost, performance and risk. |
en |
dc.description.sponsorship |
NASA/JPL |
en |
dc.format.extent |
5255501 bytes |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en_US |
en |
dc.publisher |
Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2004 |
en |
dc.subject |
power |
en |
dc.subject |
subsystem |
en |
dc.subject |
optimization |
en |
dc.subject |
evolutionary computing |
en |
dc.title |
Evolutionary computing for spacecraft power subsystem design search and optimization |
en |
dc.type |
Presentation |
en |