dc.contributor.author |
Shapiro, Andrew A. |
|
dc.contributor.author |
Ling, Sharon X. |
|
dc.contributor.author |
Ganesan, Sanka |
|
dc.contributor.author |
Cozy, R. Scott |
|
dc.contributor.author |
Hunter, Donald J. |
|
dc.contributor.author |
Schatzel, Donald V. |
|
dc.contributor.author |
Mojarradi, Mohammad M. |
|
dc.date.accessioned |
2005-12-01T23:54:44Z |
|
dc.date.available |
2005-12-01T23:54:44Z |
|
dc.date.issued |
2004-03 |
|
dc.identifier.citation |
IEEE Aerospace Conference, Big Sky, MT, March 2004 |
en |
dc.identifier.clearanceno |
03-3098 |
|
dc.identifier.uri |
http://hdl.handle.net/2014/38188 |
|
dc.description.abstract |
Extended Mars missions will require vehicles to survive a large number of extended temperature cycles. To address this issue for electronics, previous strategies have been to locate critical electronics in a "warm electronics box" where thermal management is more easily maintained. However, that strategy limits the number and location of electronics. An alternative strategy allows electronics to be remotely located on actuator and wheel arms with no heating which has the advantage of distributed control. |
en |
dc.description.sponsorship |
NASA |
en |
dc.format.extent |
5574425 bytes |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en_US |
en |
dc.publisher |
Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2004. |
en |
dc.subject |
electronics |
en |
dc.subject |
packaging |
en |
dc.subject |
chip-on-board |
en |
dc.subject |
thermal cycle |
en |
dc.title |
Electronic packaging for extended Mars surface missions |
en |
dc.type |
Preprint |
en |