dc.contributor.author |
Ding, H.Q. |
en_US |
dc.contributor.author |
Chan, C. |
en_US |
dc.contributor.author |
Gennery, D.B. |
en_US |
dc.contributor.author |
Ferraro, R.D. |
en_US |
dc.date.accessioned |
2004-10-04T20:43:34Z |
|
dc.date.available |
2004-10-04T20:43:34Z |
|
dc.date.issued |
1995 |
en_US |
dc.identifier.citation |
California Inst. Concurrent Supercomputing Consortium Annual Report |
en_US |
dc.identifier.clearanceno |
95-1458 |
en_US |
dc.identifier.uri |
http://hdl.handle.net/2014/32085 |
|
dc.description.abstract |
Several algorithms were added to the Physical-space Statistical Analysis System (PSAS) from Goddard, which assimilates observational weather data by correcting for different levels of uncertainty about the data and different locations for mobile observation platforms. The new algorithms and use of the 512-node Intel Paragon allowed a hundred-fold decrease in processing time. |
en_US |
dc.format.extent |
169422 bytes |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en_US |
|
dc.subject.other |
weather prediction climate modeling data assimilation Paragon supercomputing Kalman filter solver |
en_US |
dc.title |
Parallel Climate Data Assimilation PSAS Package Achieves 18 GFLOPs on 512-Node Intel Paragon |
en_US |