dc.contributor.author | Smyth, Padhraic | en_US |
dc.contributor.author | Heckerman, Cavid | en_US |
dc.contributor.author | Jordan, Michael I | en_US |
dc.date.accessioned | 2004-09-30 | |
dc.date.available | 2004-09-30 | |
dc.date.issued | 1996 | en_US |
dc.identifier.clearanceno | 96-0287 | en_US |
dc.identifier.uri | http://hdl.handle.net/2014/24199 | |
dc.description.abstract | In this paper we explore hidden Markov models(HMMs) and related structures within the general framework of probabilistic independence networks (PINs). The paper contains a self-contained review of the basic principles of PINs. It is shown that the well-known forward-backward (F-B) and Viterbi algorithms for HMMs are special cases of more general enference algorithms for arbitrary PINs. | en_US |
dc.format.extent | 2629508 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.subject.other | random variables pattern recognition signal processing Markov Probability Models | en_US |
dc.title | Probabilistic Independence Networks for Hidden Markov Probability Models | en_US |