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ABSTRACT 
The workshop description lists security, safety, 
survivability, fault-tolerant, and real-time as included 
among the critical properties that may be required of high 
assurance systems. Each of these is an active area of 
ongoing research. It is a daunting challenge to develop 
systems that satisfy several of them at once, yet there is a 
pressing need to do so for many high assurance systems. 

This position paper suggests the use of a quantitative risk- 
based model to help in such situations. The aim is to 
support reasoning and decision making that spans many of 
these critical properties. The potential benefits include 
prioritization of the challenges that high assurance system 
development efforts face, ability to identify solutions to 
match the challenges, identification of the areas of 
weakness where further research is warranted, and 
improved understanding of the strengths and weaknesses of 
a particular system. 

Keywords 
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1 INTRODUCTION 
The purpose of this position paper is to advocate a 
quantitative risk-based model for use in planning the 
development of high assurance systems. The model has 
been developed to facilitate early-lifecycle reasoning. It has 
proven to be of value in the multi-disciplinary setting of 
spacecraft technology development, where knowledge and 
expertise from multiple experts must be pooled. High 
assurance systems development exhibits these same needs. 

Section 2 describes the model. Section 3 uses as illustration 
an ongoing study of the challenges that impede the 
practical use of model checking technology, and what can 
be done to overcome those challenges. This example is 
selected to be of interest to M A S  workshop attendees. 
Section 4 suggests ways in which this model could be 
applied to the high assurance systems area. 

2 THE QUANTITATIVE RISK-BASED MODEL 
For several years a group of us at JPL have been 
developing and applying a quantitative risk-based model to 
the problem of assessing the viability of, and planning for, 
the development of novel technologies and systems [4]. We 
apply this model early in the lifecycle, when information is 
sparse, but the capability to influence the course of the 
development to follow is large. Our model tries to fill the 
niche between qualitative approaches and detailed design- 
centric analysis approaches. 

Qualitative approaches, supported to varying degrees by a 
variety of methods, processes and tools, work well as an 
adjunct to human decision-making. They encourage the 
elicitation of issues, and excel in providing semi-formal 
means to record interrelationships among those issues. 
Formal analysis approaches, often supported by 
sophisticated tools founded upon deep theoretical 
underpinnings and significant development efforts, excel 
once given a detailed design and putative properties for 
which to analyze. Examples of qualitative approaches 
include Quality Function Deployment (QFD) [I], i* [9], 
fault mappings [lo] and WinWin [3]. Examples of detailed 
design-centric approaches include the goal-decomposition 
approach of KAOS [2], probabilistic risk assessments 
methods (e.g., fault trees [ 12]), formal analysis techniques 
such as model-checking (e.g., Holzmann’s SPIN [7]), 
constraint analysis (e.g., Jackson’s Alloy language and 
analyzer [SI), specification analysis (e.g., consistency and 
completeness analyses within the SCR toolset [6]) and 
theorem proving (e.g., PVS [ 1 I]). 

Steve Comford at JPL conceived of the “Defect Detection 
and Prevention” (DDP) model. It was initially intended to 
facilitate planning of quality assurance activities. There are 
typically far more assurance activities (e.g., various 
analyses, tests, inspections, standards, policies, 
certifications, defensive measures) from which to choose 
than there are resources (e.g., time, budget, high fidelity 
testbeds, appropriately trained individuals) available to 
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perform those assurance activities. Their judicious 
selection, to make optimal use of the limited resources 
available, is essential. 

The DDP model’s key concepts are as follows: 

“Requirements” - the things that the system (in our 
case, spacecraft, or spacecraft’s system or subsystem) 
is to achieve, and the limitations within which it must 
operate. Requirements can be given different 
“weights” to reflect their relative importance. 

“Failure Modes” - all the things that, should they 
occur, would lead to failure to attain Requirements. 

“PACTs” (Preventions, Analyses, process Controls 
and Tests) - all the things that could be applied to 
reduce Failure Modes, by: 

o decreasing their likelihood of arising in the first 
place, 

detecting them so that they can be repaired prior to 
use (for spacecraft, hardware repair must usually 
be done prior to launch, while repairs to software 
and changes to operating procedures can be done 
after launch), or 

alleviating their severity should they occur. 

0 

0 

o 

o 

These are quantitatively related in the following manner: 

0 Requirements are quantitatively related to Failure 
Modes, to indicate the proportion of the Requirement 
that would be lost should the Failure Mode occur. In 
DDP terminology, we say that a Failure Mode has an 
“impact” on a Requirement. 

Failure Modes are quantitatively related to PACTs, to 
indicate the proportion by which each PACT reduces 
each Failure Mode (“effect” is the term used in DDP) 
should that PACT be applied. In DDP terminology, we 
say that a PACT has an “effect” on a Failure Mode. 

0 

The model further assumes that: 

0 Failure Modes’ impacts on a Requirement combine by 
addition. For example, if two Failure Mode have 
impacts on the same Requirement of 0.1 and 0.2, then 
their combined impact is 0.1 + 0.2 = 0.3). 

0 PACTs’ effects on Failure Modes combine by, 
essentially, multiplication of their complements. For 
example, if two PACTs have effects on the same 
Failure Mode of 0.1 and 0.2, then their combined 
effect is (1 - (1 - 0.1)*( 1 - 0.2)) = 0.28 

Decision-making is supported through several risk-related 
measures of risk computed from this model: 

0 The extent to which a Requirement is “at risk”: 
computed by summing the impacts of Failure Modes 
on that Requirement. 

0 Requirement’s attainment: its weight multiplied by (1 
- minimum( 1, its “at-risk” measure)). The minimum 
calculation is there because a requirement’s “at risk” 
measure may exceed 1, indicating it is more than 
totally eliminated. For calculation of requirements 
attainment, such a requirement contributes zero 
attainment. However, the “at risk” measure gives an 
indication of the amount of work yet to do to achieve 
that requirement, so both measures have their use. 

0 Overall requirements attainment: computed by the 
summing the attainment of the requirements. 

The extent to which a Failure Mode is contributing to 
total risk: computed by summing over all the 
Requirements the Failure Mode’s impact on the 
Requirement multiplied by the Requirement’s weight. 

0 

DDP’s quantitative risk-based model 
is the foundation of these measures. 

Most qualitative approaches cannot be used to 
meaningfully “add up” risks (see Figure 1 for an inventive 
use of addition illustrating this point). 

On occasion, there is a mismatch between the case at hand 
and the combination rules assumed by the model. Often, 
such mismatches can be handled by manual workarounds. 
For example, if the combination of two PACTs is not as 
effective as the model’s combination rule would calculate, 
enter a third PACT to represent that combination, manually 
score its effects accordingly, and thereafter be careful to 
select at most one of those three PACTs (either of the 
individual ones, or this manually scored combination one). 
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Fig. 1. Inventive use of addition on New Cuyarna town sign 



3 APPLICATION TO MODEL CHECKING 

For illustration, the model is shown being applied in an 
ongoing study of the challenges that impede the practical 
use of model checking technology, and what can be done to 
overcome those challenges. This example is selected to be 
of interest to W A S  workshop attendees. 

The subsections that follow illustrate the kind of 
information used to populate the DDP model for this study, 
and the use of that model to begin investigation of its 
ramifications. This study is not yet complete, but the 
information is illustrative of the approach. 

3.1 
The information required to populate the model was 
gathered in sessions involving model-checking experts who 
have experienced first-hand the excitement and the 
challenges of applying model checking to real-world 
problems. 

3.1. I Requirements 
Two groups of Requirements were considered - the choices 
of artifacts to which model checking could be applied, and 

CHALLENGES 

Population of the DDP model 

a ua 1:artifacts 
A 2:rqmts 

the choices of people who would apply model checking. 

The tree of requirements is shown in Figure 2. This, and the 
other trees that follow, are partial screenshots taken from 
the DDP tool loaded with this model. The artifacts group of 
Requirements is the subtree whose root is at the top 
(“I :artifacts”), while the users groups of Requirements is 
the subtree whose root is towards the bottom (“20:who uses 
the tool”). Alongside each requirement is a checkbox (each 
of which is shown as unchecked in this figure). DDP users 
select requirement@) for consideration by clicking to set 
those requirements’ checkboxes to checked status. For 
example, to explore the case of model checking used for 
requirements validation (e.& to validate a system’s 
requirements against safety properties) to be done by the 
developer of the system itself, the DDP user would check 
the “5:validation” checkbox, and the “21 :developers” 
checkbox. 

Note: the numbering of items in trees can be switched to 
the familiar “tree” style (e.g., 1.2.1) if so desired. The linear 
numbering scheme shown in these screenshots is 
advantageous when using DDP, because it can be used to 
label items very concisely, as will become apparent shortly. 

0 3:consistency 
0 4:completeness 
0 5:validation 
0 6:test case generation 

0 8:requirements verification 
0 9:bug finding 

0 11 :requirements verification 
0 12:unit testing 
0 13:integration testing 
0 14:structural. defect detection 
0 15:functional errors. bug finding 
0 16:timing errors 

0 18:sanity checking 
0 19:validation 

i-1 20:who uses the tool 

a 7:design 

A 0 a l O : c o d e  

r;] 17:models 

21 :developers 
0 22:test engineers 
0 23:QA 

25:model checking gurus 
0 24:IV&V 

Fig. 2. Requirements that may drive the use 
model checking 



3. I .2 Failure Modes 
Two classes of Failure Modes were 
considered - the technical issues that 
impede use of model checking ( e g ,  state 
space explosion), and the social issues that 
impede use of model checking (e.g., 
resistance to learning new languages and 
tools, as would be required in most ways 
of using model checking). The 
categorization is used to spur thinking of 
the full range of problems that impede the 
use of model checking. It is not important 
that this be a perfect categorization - what 
does matter is that some serious 
impediment is not being overlooked. The 
tree of Failure Modes is shown in Figure 3. 

3.1.3 PACTs 
PACTs are the possible activities that 
could reduce the adverse impact of Failure 
Modes, and thereby lead to increased use 
of model checking. The ones considered 
are listed in Figure 4. These have not been 
arranged into any major categories, other 
than the small subtree of computing 
resources. 

'3 m a  1:Technical issues 
2:state space explosion 
3:slow turnaround time 

w m e  4:notation that mc can't handle 
5:design notation incompatible with model checking 
6:property notation incompatible with model checking 

i-1 mf3 13:need to have specification expertize 

7:challenging generation of environment models 
8:unknown what applications domains are suitable 
9:unknown how much work it takes 
1O:complexity of deciphering error traces 

12:resitance to learning new languages and tools 
u m a  11 :Social Issues 

14:modeling expertize (how to build the model) 
15:LTL etc expertize (how to specify the properties) 

16:well documented requirements are lacking 
17:beneficiaries not the ones who do it 
18:large effort of applying model checking 
19:knowledge of the application domain is required 

Fig. 3. Failure Modes that may impede the use of model checking 

0 1 :tools for abstraction 
0 2:tools for translation into mc Ls 
0 3:hiring PhDs 
0 4:training application engineers 

E 5:increase computing resources 
6:chips get faster 

0 7:more memory 
8:parallel h M  

0 9:short training course for LTL el  al 
1 kemphasize the unique role that mlc can play 

0 11 :cost of failure a driver [rqmt?) 
0 12:specification patterns for properties 
0 13:model checking provided as a 'service' 
0 14:Develop cost models 
0 15:Case studies 
0 16:Baselining 8 benchmarking 
0 17:tFunded) partnerships with projects 

18:Search heuristics 
0 
0 2D:compositional mlc 
0 21 :marketing 
0 22:design for verification 

23:tools for visualizing results 
0 
0 
0 26:pick customers 

19:custom model checkers for programming Ls 

24:OUT OF SCOPE correcting flawed models 
25:include mc into existing toolset 

Fig. 4. PACTs that may help use of model checking 



3.1.4 Quantitative relationships 

A portion of the quantitative 
relationships between PACTs and 
Failure Modes is shown in Figure 5. 
These relationships are captured in a 
matrix whose rows are PACTs, and 
columns are Failure Modes. A cell 
entry indicates the strength of the 
effect of the row PACT at reducing 
the column Failure Mode. This is 
usually expressed as a number in the 
range [0, 11 where the extreme of 0 
means no effect whatsoever, and the 
extreme of 1 means completely 
effective (i.e., eliminates the Failure 
Mode). A blank cell is equivalent to 
an entry of 0. An intermediate value, 
k say, means it reduces the Failure 
Mode by the proportion k. For 
example, the highlighted cell is at 
the intersection of the PACT row 

(“effects ’’ and “impacts’? 

Fin. 5. The effects of PACTs on reducina Failure Modes 

“short training course for LTL et al”, and the Failure Mode 
column “property notation incompatible with model 
checking”. The cell value, 0.99, means the application of 
that PACT will reduce by 99% that Failure Mode. The 
assumption underpinning this high value is that the aspects 
of LTL or similar formal property notations needed for 
model checking can be very effectively taught to model 
checking practitioners. 

When unsure of what value to enter into a cell, certain non- 
numeric strings are allowed as cell values (for example, the 
“*” in the fourth white row down and rightmost entirely 
visible column). Such non-numeric entries play no role in 
the quantitative calculations, but do serve as visible 
placeholders for work yet to be done. 

On occasion, a PACT may actually make the situation 
worse. This is indicated by giving a negative number, in the 
range [-1 0), as the strength of the effect. The magnitude of 
this negative number indicates the likelihood of inducing 
the Failure Mode. For example, the topmost white row 
(whose PACT is “tools for abstraction”) has a value of -0.3 
in the cell for the Failure Mode “complexity of deciphering 
error traces”, on the grounds that abstraction moves a 
specification further from the system, rendering 
deciphering of error traces that result from model checking 
somewhat more problematic. 

The kinds of numbers visible in the fragment of the “effect” 
matrix of Figure 5 are representative of those we see 
entered for assessments of advanced technologies. The 
nature of these assessments precludes high precision 
entries. Instead, we make do with these coarse estimates. 
Nevertheless, the aggregation of these coarse estimates can 
point to clear decisions. 

The information that connects Requirements to Failure 
Modes is captured in a similar manner in the DDP 
“impacts” matrix (in the interest of brevity, not shown 
here). 

3.2 Using the DDP Model 
Once the DDP model has been populated, it can be used to 
reveal the ramifications of the combined set of information, 
and ultimately to make decisions. A brief example scenario 
follows. 

Suppose that the objective is to understand the use of model 
checking for a system’s requirements validation, to be done 
by the developers of the system itself. This is input to the 
DDP model by checking the check boxes in the 
requirements tree for items 5 (validation, within rqmts, 
within artifacts) and 21 (developers within who uses the 
tool) of the requirements tree shown earlier in Figure 2. 

The DDP tool automatically computes the various risk 
measures, and offers several ways to scrutinize the results. 
A key one is shown in Figure 6, where each bar 
corresponds to a Failure Mode, and the height corresponds 
to that Failure Mode’s contribution to risk (the vertical axis 
is a log scale). These are shown sorted in descending order. 
We see that Failure Mode number 9 (“unknown how much 
work it takes”) is the highest ranked one, while Failure 
Mode number 19 (“knowledge of the application 
domain is required”) is the lowest ranked one. It is low 
because the system developer, who already has that 
knowledge, is doing the application. 

We can explore ways to reduce risks by selecting various 
PACTs. After each change, the DDP tool automatically 
recomputes its various risk measures, and redisplays the 
results. For a model such as this, with a few dozen at most 
of each kind of item, recomputation is very rapid. 



Fig. 6. Failure Modes in Decreasing Order Fig. 7. Failure Modes after PACT 14 selection 

Fig. 8. Failure Modes after PACT 13 selection 

Figures 6, 7, 8 and 9 show several displays of the risk bar 
chart corresponding to different selections of PACTs. 

0 The status when no PACTs have been applied is shown 
in Figure 6. The risks are sorted in descending order (the 
circle obscuring the number 9 below the leftmost bar is 
the tool’s mechanism for drawing attention to a particular 
item). 

Selecting the PACT 14 “develop cost models”, leads to 
the risk profile shown in Figure 7. The dark portion of 
each bar shows its reduced level, while the ‘light gray 
portion shows the cumulative risk reduction. (In the tool 
we prefer to use vivid colors over shades of gray). Note 
that Failure Mode number 9 has been substantially 
reduced, and also Failure Mode number 8 has been 
slightly reduced. This is because the selected PACT has 
an effect on both those Failure Modes. Indeed, it is 
common for PACTs to have multiple such effects. 

The altemative of selecting PACT 13 “model checking 
provided as a “service”” has the effect shown in Figure 8. 
This one PACT reduces every one of the Failure Modes 
to some extent! 

The combined effect of selecting both PACTs 13 and 
14 is shown in Figure 9. We can see their combined effect 
on Failure Mode number 9, and to a lesser extent, on 
Failure Mode number 8. 

Of course, different PACTs will have different costs, so in 
selecting them, users must balance their beneficial affects 

0 

0 

0 

Fig. 9. Failure Modes after PACT selections 
13 & 14 

against those costs. 

A populated DDP model can be used to explore the cost 
and beneflt ramijkations of these choices. 

The DDP tool provides assistance to users during this 
selection process via hrther visualizations. A key one is 
shown in Figure 10, where each row corresponds to a 
Failure Mode, listed here in descending order of magnitude 
from top to bottom. The dark bar at the left of each row 
indicates the magnitude of the Failure Mode. Alongside it 
are smaller numbered rectangles, each corresponding to a 
PACT that has some non-zero effect on that Failure Mode. 
For example, the sixth Failure Mode down, shown 
highlighted within the prominent border, has listed 
alongside it PACTs numbered 1, 3, 4, 13, 17 and 19. Each 
PACT’S rectangle is shaded to indicate the magnitude of its 
effect on the Failure Mode. For example, PACT number 19 
has no visible shading, so its effect must be very small (but 
non-zero, since otherwise it would not have been listed), 
while PACT number 17 has a sizeable gray shaded area, 
indicating its correspondingly large effect. Checkboxes 
indicate the selected status for each PACT. Finally, 
positioning the cursor over a PACT causes all instances of 
that PACT to be highlighted by a surrounding border. In 
the figure we see this for PACT number 4, which is 
highlighted in many places. In the tool, judicious use of 
color and dynamic effects (e.g., blinking) renders these 
more effectively than is conveyed by this static grayscale 
figure. 
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Fig. I O .  An alternative visualization of Failure Modes and the 
PACTs that address them 

If users have populated the model with cost information 
(what each PACT would cost to perform), it is possible to 
treat the PACT selection as an optimization problem. For 
example, for a given amount of resources, select PACTs to 
maximize requirements attainment while remaining within 
that resource limit [ 5 ] .  

4 POTENTIAL FOR APPLICATION TO HIGH 

The purpose of this position paper is to suggest that 
this same quantitative risk-based approach be considered 

for application to High Assurance Systems. 

Our experience in applying this model to advanced 
technologies and systems suggests that it has the following 
benefits: 

0 Encourages the elicitation of risks, and therefore 

Prioritizes risks so that resources can be directed to the 

ASSURANCE SYSTEMS 

diminishes the danger of overlooking risks. 

most significant risks. 

Permits the exploration of altemative risk mitigation 
strategies (selections of PACTs) 

0 Reveals the purpose of risk mitigations (PACTs), 
namely the reduction of Failure Modes, particularly the 
more risky of these. 

0 

0 

0 Gives insight into the requirements, indicating which 
of them are proving the most problematic to attain 
(because they are at risk due to Failure Modes whose 
reduction is expensive or impossible). 

Point the way to research areas in need of further 
investigation. 

All of these benefits are important to High Assurance 
Systems. The area lies at the intersection of several 
disciplines, so the pooling of experts' knowledge and best 
practices is both challenging and essential. 
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Further information on the DDP process and tool can be 
found at: http://ddptool.jpl.nasa.gov 
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