
A Quantitative Risk-based Model
for Reasoning over Critical System Properties

Martin S. Feather
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr

Pasadena CA 91 109-8099, USA
+18183541194

Martin. S .Feather@Jpl.Nasa.Gov

ABSTRACT
The workshop description lists security, safety,
survivability, fault-tolerant, and real-time as included
among the critical properties that may be required of high
assurance systems. Each of these is an active area of
ongoing research. It is a daunting challenge to develop
systems that satisfy several of them at once, yet there is a
pressing need to do so for many high assurance systems.

This position paper suggests the use of a quantitative risk-
based model to help in such situations. The aim is to
support reasoning and decision making that spans many of
these critical properties. The potential benefits include
prioritization of the challenges that high assurance system
development efforts face, ability to identify solutions to
match the challenges, identification of the areas of
weakness where further research is warranted, and
improved understanding of the strengths and weaknesses of
a particular system.

Keywords
Risk, requirements, tradeoffs, prioritization, quantitative
models.

1 INTRODUCTION
The purpose of this position paper is to advocate a
quantitative risk-based model for use in planning the
development of high assurance systems. The model has
been developed to facilitate early-lifecycle reasoning. It has
proven to be of value in the multi-disciplinary setting of
spacecraft technology development, where knowledge and
expertise from multiple experts must be pooled. High
assurance systems development exhibits these same needs.

Section 2 describes the model. Section 3 uses as illustration
an ongoing study of the challenges that impede the
practical use of model checking technology, and what can
be done to overcome those challenges. This example is
selected to be of interest to M A S workshop attendees.
Section 4 suggests ways in which this model could be
applied to the high assurance systems area.

2 THE QUANTITATIVE RISK-BASED MODEL
For several years a group of us at JPL have been
developing and applying a quantitative risk-based model to
the problem of assessing the viability of, and planning for,
the development of novel technologies and systems [4]. We
apply this model early in the lifecycle, when information is
sparse, but the capability to influence the course of the
development to follow is large. Our model tries to fill the
niche between qualitative approaches and detailed design-
centric analysis approaches.

Qualitative approaches, supported to varying degrees by a
variety of methods, processes and tools, work well as an
adjunct to human decision-making. They encourage the
elicitation of issues, and excel in providing semi-formal
means to record interrelationships among those issues.
Formal analysis approaches, often supported by
sophisticated tools founded upon deep theoretical
underpinnings and significant development efforts, excel
once given a detailed design and putative properties for
which to analyze. Examples of qualitative approaches
include Quality Function Deployment (QFD) [I], i* [9],
fault mappings [lo] and WinWin [3]. Examples of detailed
design-centric approaches include the goal-decomposition
approach of KAOS [2], probabilistic risk assessments
methods (e.g., fault trees [12]), formal analysis techniques
such as model-checking (e.g., Holzmann’s SPIN [7]),
constraint analysis (e.g., Jackson’s Alloy language and
analyzer [SI), specification analysis (e.g., consistency and
completeness analyses within the SCR toolset [6]) and
theorem proving (e.g., PVS [1 I]).

Steve Comford at JPL conceived of the “Defect Detection
and Prevention” (DDP) model. It was initially intended to
facilitate planning of quality assurance activities. There are
typically far more assurance activities (e.g., various
analyses, tests, inspections, standards, policies,
certifications, defensive measures) from which to choose
than there are resources (e.g., time, budget, high fidelity
testbeds, appropriately trained individuals) available to

mailto:Feather@Jpl.Nasa.Gov

perform those assurance activities. Their judicious
selection, to make optimal use of the limited resources
available, is essential.

The DDP model’s key concepts are as follows:

“Requirements” - the things that the system (in our
case, spacecraft, or spacecraft’s system or subsystem)
is to achieve, and the limitations within which it must
operate. Requirements can be given different
“weights” to reflect their relative importance.

“Failure Modes” - all the things that, should they
occur, would lead to failure to attain Requirements.

“PACTs” (Preventions, Analyses, process Controls
and Tests) - all the things that could be applied to
reduce Failure Modes, by:

o decreasing their likelihood of arising in the first
place,

detecting them so that they can be repaired prior to
use (for spacecraft, hardware repair must usually
be done prior to launch, while repairs to software
and changes to operating procedures can be done
after launch), or

alleviating their severity should they occur.

0

0

o

o

These are quantitatively related in the following manner:

0 Requirements are quantitatively related to Failure
Modes, to indicate the proportion of the Requirement
that would be lost should the Failure Mode occur. In
DDP terminology, we say that a Failure Mode has an
“impact” on a Requirement.

Failure Modes are quantitatively related to PACTs, to
indicate the proportion by which each PACT reduces
each Failure Mode (“effect” is the term used in DDP)
should that PACT be applied. In DDP terminology, we
say that a PACT has an “effect” on a Failure Mode.

0

The model further assumes that:

0 Failure Modes’ impacts on a Requirement combine by
addition. For example, if two Failure Mode have
impacts on the same Requirement of 0.1 and 0.2, then
their combined impact is 0.1 + 0.2 = 0.3).

0 PACTs’ effects on Failure Modes combine by,
essentially, multiplication of their complements. For
example, if two PACTs have effects on the same
Failure Mode of 0.1 and 0.2, then their combined
effect is (1 - (1 - 0.1)*(1 - 0.2)) = 0.28

Decision-making is supported through several risk-related
measures of risk computed from this model:

0 The extent to which a Requirement is “at risk”:
computed by summing the impacts of Failure Modes
on that Requirement.

0 Requirement’s attainment: its weight multiplied by (1
- minimum(1, its “at-risk” measure)). The minimum
calculation is there because a requirement’s “at risk”
measure may exceed 1, indicating it is more than
totally eliminated. For calculation of requirements
attainment, such a requirement contributes zero
attainment. However, the “at risk” measure gives an
indication of the amount of work yet to do to achieve
that requirement, so both measures have their use.

0 Overall requirements attainment: computed by the
summing the attainment of the requirements.

The extent to which a Failure Mode is contributing to
total risk: computed by summing over all the
Requirements the Failure Mode’s impact on the
Requirement multiplied by the Requirement’s weight.

0

DDP’s quantitative risk-based model
is the foundation of these measures.

Most qualitative approaches cannot be used to
meaningfully “add up” risks (see Figure 1 for an inventive
use of addition illustrating this point).

On occasion, there is a mismatch between the case at hand
and the combination rules assumed by the model. Often,
such mismatches can be handled by manual workarounds.
For example, if the combination of two PACTs is not as
effective as the model’s combination rule would calculate,
enter a third PACT to represent that combination, manually
score its effects accordingly, and thereafter be careful to
select at most one of those three PACTs (either of the
individual ones, or this manually scored combination one).

MARTIN FEATHER

Fig. 1. Inventive use of addition on New Cuyarna town sign

3 APPLICATION TO MODEL CHECKING

For illustration, the model is shown being applied in an
ongoing study of the challenges that impede the practical
use of model checking technology, and what can be done to
overcome those challenges. This example is selected to be
of interest to W A S workshop attendees.

The subsections that follow illustrate the kind of
information used to populate the DDP model for this study,
and the use of that model to begin investigation of its
ramifications. This study is not yet complete, but the
information is illustrative of the approach.

3.1
The information required to populate the model was
gathered in sessions involving model-checking experts who
have experienced first-hand the excitement and the
challenges of applying model checking to real-world
problems.

3.1. I Requirements
Two groups of Requirements were considered - the choices
of artifacts to which model checking could be applied, and

CHALLENGES

Population of the DDP model

a ua 1:artifacts
A 2:rqmts

the choices of people who would apply model checking.

The tree of requirements is shown in Figure 2. This, and the
other trees that follow, are partial screenshots taken from
the DDP tool loaded with this model. The artifacts group of
Requirements is the subtree whose root is at the top
(“I :artifacts”), while the users groups of Requirements is
the subtree whose root is towards the bottom (“20:who uses
the tool”). Alongside each requirement is a checkbox (each
of which is shown as unchecked in this figure). DDP users
select requirement@) for consideration by clicking to set
those requirements’ checkboxes to checked status. For
example, to explore the case of model checking used for
requirements validation (e.& to validate a system’s
requirements against safety properties) to be done by the
developer of the system itself, the DDP user would check
the “5:validation” checkbox, and the “21 :developers”
checkbox.

Note: the numbering of items in trees can be switched to
the familiar “tree” style (e.g., 1.2.1) if so desired. The linear
numbering scheme shown in these screenshots is
advantageous when using DDP, because it can be used to
label items very concisely, as will become apparent shortly.

0 3:consistency
0 4:completeness
0 5:validation
0 6:test case generation

0 8:requirements verification
0 9:bug finding

0 11 :requirements verification
0 12:unit testing
0 13:integration testing
0 14:structural. defect detection
0 15:functional errors. bug finding
0 16:timing errors

0 18:sanity checking
0 19:validation

i-1 20:who uses the tool

a 7:design

A 0 a l O : c o d e

r;] 17:models

21 :developers
0 22:test engineers
0 23:QA

25:model checking gurus
0 24:IV&V

Fig. 2. Requirements that may drive the use
model checking

3. I .2 Failure Modes
Two classes of Failure Modes were
considered - the technical issues that
impede use of model checking (e g , state
space explosion), and the social issues that
impede use of model checking (e.g.,
resistance to learning new languages and
tools, as would be required in most ways
of using model checking). The
categorization is used to spur thinking of
the full range of problems that impede the
use of model checking. It is not important
that this be a perfect categorization - what
does matter is that some serious
impediment is not being overlooked. The
tree of Failure Modes is shown in Figure 3.

3.1.3 PACTs
PACTs are the possible activities that
could reduce the adverse impact of Failure
Modes, and thereby lead to increased use
of model checking. The ones considered
are listed in Figure 4. These have not been
arranged into any major categories, other
than the small subtree of computing
resources.

'3 m a 1:Technical issues
2:state space explosion
3:slow turnaround time

w m e 4:notation that mc can't handle
5:design notation incompatible with model checking
6:property notation incompatible with model checking

i-1 mf3 13:need to have specification expertize

7:challenging generation of environment models
8:unknown what applications domains are suitable
9:unknown how much work it takes
1O:complexity of deciphering error traces

12:resitance to learning new languages and tools
u m a 11 :Social Issues

14:modeling expertize (how to build the model)
15:LTL etc expertize (how to specify the properties)

16:well documented requirements are lacking
17:beneficiaries not the ones who do it
18:large effort of applying model checking
19:knowledge of the application domain is required

Fig. 3. Failure Modes that may impede the use of model checking

0 1 :tools for abstraction
0 2:tools for translation into mc Ls
0 3:hiring PhDs
0 4:training application engineers

E 5:increase computing resources
6:chips get faster

0 7:more memory
8:parallel h M

0 9:short training course for LTL el al
1 kemphasize the unique role that mlc can play

0 11 :cost of failure a driver [rqmt?)
0 12:specification patterns for properties
0 13:model checking provided as a 'service'
0 14:Develop cost models
0 15:Case studies
0 16:Baselining 8 benchmarking
0 17:tFunded) partnerships with projects

18:Search heuristics
0
0 2D:compositional mlc
0 21 :marketing
0 22:design for verification

23:tools for visualizing results
0
0
0 26:pick customers

19:custom model checkers for programming Ls

24:OUT OF SCOPE correcting flawed models
25:include mc into existing toolset

Fig. 4. PACTs that may help use of model checking

3.1.4 Quantitative relationships

A portion of the quantitative
relationships between PACTs and
Failure Modes is shown in Figure 5.
These relationships are captured in a
matrix whose rows are PACTs, and
columns are Failure Modes. A cell
entry indicates the strength of the
effect of the row PACT at reducing
the column Failure Mode. This is
usually expressed as a number in the
range [0, 11 where the extreme of 0
means no effect whatsoever, and the
extreme of 1 means completely
effective (i.e., eliminates the Failure
Mode). A blank cell is equivalent to
an entry of 0. An intermediate value,
k say, means it reduces the Failure
Mode by the proportion k. For
example, the highlighted cell is at
the intersection of the PACT row

(“effects ’’ and “impacts’?

Fin. 5. The effects of PACTs on reducina Failure Modes

“short training course for LTL et al”, and the Failure Mode
column “property notation incompatible with model
checking”. The cell value, 0.99, means the application of
that PACT will reduce by 99% that Failure Mode. The
assumption underpinning this high value is that the aspects
of LTL or similar formal property notations needed for
model checking can be very effectively taught to model
checking practitioners.

When unsure of what value to enter into a cell, certain non-
numeric strings are allowed as cell values (for example, the
“*” in the fourth white row down and rightmost entirely
visible column). Such non-numeric entries play no role in
the quantitative calculations, but do serve as visible
placeholders for work yet to be done.

On occasion, a PACT may actually make the situation
worse. This is indicated by giving a negative number, in the
range [-1 0), as the strength of the effect. The magnitude of
this negative number indicates the likelihood of inducing
the Failure Mode. For example, the topmost white row
(whose PACT is “tools for abstraction”) has a value of -0.3
in the cell for the Failure Mode “complexity of deciphering
error traces”, on the grounds that abstraction moves a
specification further from the system, rendering
deciphering of error traces that result from model checking
somewhat more problematic.

The kinds of numbers visible in the fragment of the “effect”
matrix of Figure 5 are representative of those we see
entered for assessments of advanced technologies. The
nature of these assessments precludes high precision
entries. Instead, we make do with these coarse estimates.
Nevertheless, the aggregation of these coarse estimates can
point to clear decisions.

The information that connects Requirements to Failure
Modes is captured in a similar manner in the DDP
“impacts” matrix (in the interest of brevity, not shown
here).

3.2 Using the DDP Model
Once the DDP model has been populated, it can be used to
reveal the ramifications of the combined set of information,
and ultimately to make decisions. A brief example scenario
follows.

Suppose that the objective is to understand the use of model
checking for a system’s requirements validation, to be done
by the developers of the system itself. This is input to the
DDP model by checking the check boxes in the
requirements tree for items 5 (validation, within rqmts,
within artifacts) and 21 (developers within who uses the
tool) of the requirements tree shown earlier in Figure 2.

The DDP tool automatically computes the various risk
measures, and offers several ways to scrutinize the results.
A key one is shown in Figure 6, where each bar
corresponds to a Failure Mode, and the height corresponds
to that Failure Mode’s contribution to risk (the vertical axis
is a log scale). These are shown sorted in descending order.
We see that Failure Mode number 9 (“unknown how much
work it takes”) is the highest ranked one, while Failure
Mode number 19 (“knowledge of the application
domain is required”) is the lowest ranked one. It is low
because the system developer, who already has that
knowledge, is doing the application.

We can explore ways to reduce risks by selecting various
PACTs. After each change, the DDP tool automatically
recomputes its various risk measures, and redisplays the
results. For a model such as this, with a few dozen at most
of each kind of item, recomputation is very rapid.

Fig. 6. Failure Modes in Decreasing Order Fig. 7. Failure Modes after PACT 14 selection

Fig. 8. Failure Modes after PACT 13 selection

Figures 6, 7, 8 and 9 show several displays of the risk bar
chart corresponding to different selections of PACTs.

0 The status when no PACTs have been applied is shown
in Figure 6. The risks are sorted in descending order (the
circle obscuring the number 9 below the leftmost bar is
the tool’s mechanism for drawing attention to a particular
item).

Selecting the PACT 14 “develop cost models”, leads to
the risk profile shown in Figure 7. The dark portion of
each bar shows its reduced level, while the ‘light gray
portion shows the cumulative risk reduction. (In the tool
we prefer to use vivid colors over shades of gray). Note
that Failure Mode number 9 has been substantially
reduced, and also Failure Mode number 8 has been
slightly reduced. This is because the selected PACT has
an effect on both those Failure Modes. Indeed, it is
common for PACTs to have multiple such effects.

The altemative of selecting PACT 13 “model checking
provided as a “service”” has the effect shown in Figure 8.
This one PACT reduces every one of the Failure Modes
to some extent!

The combined effect of selecting both PACTs 13 and
14 is shown in Figure 9. We can see their combined effect
on Failure Mode number 9, and to a lesser extent, on
Failure Mode number 8.

Of course, different PACTs will have different costs, so in
selecting them, users must balance their beneficial affects

0

0

0

Fig. 9. Failure Modes after PACT selections
13 & 14

against those costs.

A populated DDP model can be used to explore the cost
and beneflt ramijkations of these choices.

The DDP tool provides assistance to users during this
selection process via hrther visualizations. A key one is
shown in Figure 10, where each row corresponds to a
Failure Mode, listed here in descending order of magnitude
from top to bottom. The dark bar at the left of each row
indicates the magnitude of the Failure Mode. Alongside it
are smaller numbered rectangles, each corresponding to a
PACT that has some non-zero effect on that Failure Mode.
For example, the sixth Failure Mode down, shown
highlighted within the prominent border, has listed
alongside it PACTs numbered 1, 3, 4, 13, 17 and 19. Each
PACT’S rectangle is shaded to indicate the magnitude of its
effect on the Failure Mode. For example, PACT number 19
has no visible shading, so its effect must be very small (but
non-zero, since otherwise it would not have been listed),
while PACT number 17 has a sizeable gray shaded area,
indicating its correspondingly large effect. Checkboxes
indicate the selected status for each PACT. Finally,
positioning the cursor over a PACT causes all instances of
that PACT to be highlighted by a surrounding border. In
the figure we see this for PACT number 4, which is
highlighted in many places. In the tool, judicious use of
color and dynamic effects (e.g., blinking) renders these
more effectively than is conveyed by this static grayscale
figure.

20 [322

Fig. I O . An alternative visualization of Failure Modes and the
PACTs that address them

If users have populated the model with cost information
(what each PACT would cost to perform), it is possible to
treat the PACT selection as an optimization problem. For
example, for a given amount of resources, select PACTs to
maximize requirements attainment while remaining within
that resource limit [5] .

4 POTENTIAL FOR APPLICATION TO HIGH

The purpose of this position paper is to suggest that
this same quantitative risk-based approach be considered

for application to High Assurance Systems.

Our experience in applying this model to advanced
technologies and systems suggests that it has the following
benefits:

0 Encourages the elicitation of risks, and therefore

Prioritizes risks so that resources can be directed to the

ASSURANCE SYSTEMS

diminishes the danger of overlooking risks.

most significant risks.

Permits the exploration of altemative risk mitigation
strategies (selections of PACTs)

0 Reveals the purpose of risk mitigations (PACTs),
namely the reduction of Failure Modes, particularly the
more risky of these.

0

0

0 Gives insight into the requirements, indicating which
of them are proving the most problematic to attain
(because they are at risk due to Failure Modes whose
reduction is expensive or impossible).

Point the way to research areas in need of further
investigation.

All of these benefits are important to High Assurance
Systems. The area lies at the intersection of several
disciplines, so the pooling of experts' knowledge and best
practices is both challenging and essential.

ACKNOWLEDGEMENTS
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Govemment
or the Jet Propulsion Laboratory, California Institute of
Technology. Special thanks are due to researchers both at
JPL and at the NASA Ames Research Center Automated
Software Engineering Group for sharing their expertise
with model checking.

Further information on the DDP process and tool can be
found at: http://ddptool.jpl.nasa.gov

0

http://ddptool.jpl.nasa.gov

REFERENCES
[11 Akao, Y. 1990 “Quality Function Deployment,’,

Productivity Press, Cambridge, Massachusetts.

Bertrand, P., Darimont, R., Delor, E., Massonet, P., and
van Lamsweerde, A., 1998, “GRAILKAOS: an
environment for goal driven requirements engineering”,
20th Int. Conference on Software Engineering.

Boehm, B., Bose, P., Horowitz, E., and Lee, M., 1994,
“Software Requirements as Negotiated Win
Conditions”, Proceedings 1 st International Conference
on Requirements Engineering, Colorado Springs,
Colorado, pp. 74-83.

[4] Comford, S.L. , Feather, M.S., & Hicks, K.A. “DDP -
A tool for life-cycle risk management”, IEEE
Aerospace Conference, Big Sky, Montana, Mar 2001,

[5] Feather, M.S. & Menzies, T. “Converging on the
Optimal Attainment of Requirements”, to appear in the
Proceedings of the IEEE Joint International Conference
on Requirements Engineering, Essen, Germany, Sept.
2002.

[6] Heitmeyer, C., Labaw, B., & Kiskis, D., “Consistency
Checking of SCR-Style Requirements Specifications”,
Proceedings 2nd IEEE International Symposium on

pp. 441-451.

Requirements Engineering, York England, 1995, pp.

[7] Holzmann, G.J., “The Spin Model Checker SPIN”,
IEEE Trans. on Software Engineering, Vol. 23, No. 5,
May 1997, pp. 279-295.

[8] Jackson, D., Schechter, I. & Shlyakhter, I., “Alcoa: the
Alloy Constraint Analyzer”, Proceedings of the 2000
International Conference on Software Engineering,
Limerick, Ireland, 2000, pp. 739-733.

[9] Mylopoulos, J., Chung, L., Liao, S., Wang, H., and Yu,
E., 200 1, “Exploring Alternatives during Requirements
Analysis”, IEEE Software 18(l), pp. 92-96.

[lo] Raz, 0. & Shaw, M. “An Approach to Preserving
Sufficient Correctness in Open Resource Coalitions”,
Proceedings of the 10” International Workshop on
Software Specification and Design, San Diego,
California, Nov. 2000, pp. 159-170.

[l l] Shankar, N., Owre, S. & Rushby, J.M., “The PVS
Proof Checker: A Reference Manual.” Computer
Science Laboratory, SRI International, Menlo Park, CA,
February 1993.

[I21 Vesely, W.E., Goldberg, F.F., Roberts, N.H. & Haasl,
D.F., “Fault Tree Handbook”, U.S. Nuclear Regulatory
Commission NUREG-0492, 1981.

56-63.

