
Advances in Science Planning Tools with the Science Opportunity
Analyzer

Carol A. Polanskey, Barbara Streiffert, Taifun O'Reilly, Joshua Colwell

Jet Propulsion Laboratory
California Institute of Technology

National Aeronautics and Space Administration
4800 Oak Grove Drive, Pasadena, CA 91 109-8099 USA

Carol.Polanskev@ipl.nasa.gov (818) 393-7874
Barbara.Streiffert@ipl.nasa.gov (8 18) 354-8 140

Taifun.Oreillv@ipl.nasa.gov (818) 354-1 170

Laboratory for Atmospheric 8z Space Physics
University of Colorado

Boulder, CO. 80309-0392 USA
Joshua.Colwell @lasp.colorado.edu (303) 492-6805

ABSTRACT

For many years the diverse scientific community that supports JPL's wide variety of
interplanetary space missions has needed a tool in order to plan and develop their experiments.
The tool needs to be easily adapted to various mission types and portable to the user community.
The Science Opportunity Analyzer, SOA, now in its third year of development, is intended to
meet this need. SOA is a java based application that is designed to enable scientists to identify
and analyze opportunities for science observations from spacecraft. It differs from other planning
tools in that it does not require an indepth knowledge of the spacecraft command system or
operation modes to begin high level planning. Users can, however, develop increasingly detailed
levels of design.

SOA consists of five major functions: Opportunity Search, Visualization, Observation Design,
Constraint Checking, and Communications. Opportunity Search is a GUIdriven interface to
existing search engines which can be used to identify times when a spacecraft is in a specific
geometrical relationship with other bodies in the solar system. This function can be used for
advanced mission planning as well as for making last minute adjustments to mission sequences in
response to trajectory modifications. Visualization is a key aspect of SOA. The user can view
observation opportunities in either a 3D representation or as a 2D map projection. The user is
given extensive flexibility to customize what is displayed in the view. Observation Design allows
the user to orient the spacecraft and visualize the projection of the instrument field of view for
that orientation using the same views as Opportunity Search. Constraint Checking is provided to
validate various geometrical and physical aspects of an observation design. The user has the
ability to easily create custom rules or to use official project-generated flight rules. This
capability may also allow scientists to easily impact the cost to science if flight rule changes
occur. Finally, SOA is unique in that it is designed to be able to communicate with a variety of
existing planning and sequencing tools.

From the very beginning SOA was designed with the user in mind. Extensive surveys of the
potential user community were conducted in order to develop the software requirements.
Throughout the development period, close ties have been maintained with the science community
to insure that the tool maintains its user focus. Although development is still in its early stages,
SOA is already developing a user community on the Cassini project which is depending on this

1

mailto:Carol.Polanskev@ipl.nasa.gov
mailto:Barbara.Streiffert@ipl.nasa.gov
mailto:Taifun.Oreillv@ipl.nasa.gov
mailto:lasp.colorado.edu

tool for their science planning. There are other tools at JPL that do various pieces of what SOA
can do; however, there is no other tool which combines all these functions and presents them to
the user in such a convenient, cohesive, and easy to use fashion.

1.0 Introduction

Spacecraft tend to be “closed systems” similar in many ways to cars. Both have steering
mechanisms; both need fuel and both have instrumentation. However, the instrumentation is
different. In cars instruments are generally indicators that give the driver information. On
spacecraft they can be scientific instruments that perform observations and collect data. Another
difference is that many spacecraft rely on commands sent from the ground to tum hardware on
and off, perform diagnostic checks and start instrument observations because they don’t carry
human drivers to carry out these functions. They only have computers to relay the information to
the spacecraft hardware.

Unlike cars, spacecraft operations are tied to an eventdriven timeline that is governed by orbital
mechanics. It is not possible to stop the spacecraft to make decisions about the best observation to
be made next. These characteristics along with the finite nature of spacecraft resources (there are
no gas stations in space) place a premium on planning spacecraft activities. Science Opportunity
Analyzer (SOA) is a software tool with broad functionality designed to meet this need for
planning.

In order for the scientist to be able to get the highest quality data and the best observations, the
scientist needs to have information that shows that the planned observation not only meets with
the scientific objectives, but also meets with reality. However, in the past, the science user has
been left to develop ad hoc tools that are specific to a particular space mission for a specific
instrument built solely for that mission. These tools have not allowed the users to share
observation information easily and tend to be a bare minimum of what is actually needed.
Generally, these tools don’t communicate with other software tools that are used to setup the
commands that are to be sent to the spacecraft. Science Opportunity Analyzer (SOA), a software
tool, has been built to fulfill the need of assuring that the science objectives can be meet as well
as the needs of sharing information and entering the observation into the pipeline that ultimately
results in commands to the spacecraft.

For this tool to meet the needs of the user community, it has been important to find out what the
end user needed. A methodology called “Quality Functional Deployment” (see, e.g., Belhe and
Kusiak, 1996) or “Obtaining the Voice of the Customer’’ was used. A cross discipline group of
scientists, software engineers and system engineers met and created an open-ended questionnaire
and interviewed 40 selected stakeholders in the software. This group also developed a closed-
ended set of questions (short answer, fill-in-the-blank, multiple choice, rank, etc.) as a check of
the results of the interviews using the open-ended questionnaire. The results of the interviews
were then transformed into required functional capabilities and ways to measure those functional
capabilities. It was important for this group to continue in some way to insure that the software
remained true to its charter. The software and system engineers formed the SOA Development
Team, and developed the software requirements and the top-level design. The science members
became members of the SOA Standing Review Board. The software requirements and the design
reviews have been held before this evaluation board. In this way the software has continued to be
implemented based on the “Voice of the Customer”.

From the interviews several basic scenarios of how a science user would use a tool like SOA
were developed. The following is one typical high-level scenario.

2

1. One or more time periods of opportunity that satisfy entered geometric criteria are found.
2. The science user selects one of the time periods and chooses to see a display of that time

in either a 2dimensional or a 3dimensional view.
3. The user determines the time window with the most potential and proceeds to design the

observation. During this time the user continues to check the display of the design to
make sure that the design, as it unfolds, continues to meet the science objectives.

4. As part of the design process the science user chooses to have the tool check the design
against spacecraft constraints. These constraints may be geometric in nature. For
example, the instrument may not be able to have the Sun in its field of view without
damaging the instrument. The constraints may be hardware state driven. In this case, an
example would be that the spacecraft couldn’t actually turn as quickly as desired.

5 . After the design is constraint-free, the science user refines the design and saves it for
future recall.

6. Finally, the user adds the design to the plan of activities that are to be sent to the
spacecraft. Constraint checking will be performed again once all of the observations and
other spacecraft tasks are entered in the plan of activities.

At any place in the scenario, the science user can go back to a previous step and make changes as
needed or desired. SOA has been built to perform all of these tasks. It consists of five major
functional areas: Opportunity Search, Visualization, Observation Design, Constraint Checking
and Communications.

Before proceeding with a more detailed description of the major functional areas, it is important
to understand the process of sending commands to a spacecraft. At The Jet Propulsion Laboratory
(JPL), this process is called the Uplink Process. It consists of engineering and science groups
deciding on the tasks and observations that they want the spacecraft to perform. These tasks are
defined and all of them are placed on a time-line that forms an operational plan for the spacecraft.
The time-line is refined so that it contains no constraint violations. In order to eliminate the
conflicts the tasks in violation are sent to their respective submitters for modification and then
resubmitted. It is important that the tasWobservation is initially constraint free or it is possible that
the tasWobservation will be removed from the plan. All of the functional areas in SOA support an
observation being added to the operational plan.

2.0 Science Opportunity Analyzer (SOA)

Currently, SOA is a java-based application that runs on Suns under Sun Solaris and PCs under
NT, XP, 2000 and Linux. It is a multi-mission tool and can be easily configured for different
missions. It utilizes Swing, Java 3-D, Java 2-D and XML extensively. SOA uses a hierarchical
approach to objects so that project specific objects can be easily added. The project specific
objects form the lowest tier of the hierarchy. SOA has tabs (see Figure 2.1) that represent the
major work areas of Opportunity Search, Observation Design (Visualization and Spacecraft Task
Selection), Constraint Checking and Communications. For the next delivery another tab has been
added for Output Data. SOA uses spacecraft trajectory information, planetary constants and
spacecraft information provided by JPL Navigation.

3

Figure 2.1 shows the Opportunity Search display. A search for a flyby of Enceladus has
been performed and the time periods that met the search criterion are shown.

2.1 Opportunity Search

In the user scenario above the first area the science user accesses is Opportunity Search.
Opportunity Search allows the science user to identify times when a spacecraft is in a specific
geometric relationship with other bodies in the solar system. This functional area allows the user
to select from a list of more than thirty geometric search criteria including periapse times and
apoapse times and various illumination geometries. These search criteria are based on continuous
functions that occur either at a specific time (for example, a certain distance from a celestial
body) or over a time span (for example, an occultation). A search criterion can be created or
entered from a file of previously created criteria. If the search criterion is new, the science user is
presented with a drag and drop graphical user interface. The interface also displays a list of the
information that is needed by that search criterion - called properties. The science user enters the
desired properties associated with the selected search criterion including the celestial bodies
involved and other pertinent information such as angles or distance. A search criterion can be a
simple single search or a more complex search combining multiple search criteria using Boolean
operators of “and”, “or”, and “not”. Once the search criterion is created and written to the list, the
science user selects to have the software perform the search. The time periods when the
geometric criteria have been satisfied are presented to the user in a list (see Figure 2.1).

SOA uses two search engines that have been created at Jet Propulsion Laboratory. Each of these
search engines requires the input data to be entered a specific way. SOA has divided the
Opportunity Search objects into two groups - the software models that contain the values for the
Opportunity Search criterion properties and the templates that put the properties in the correct
format for the chosen search engine. This scheme allows new search engines to be added easily,
and for search criterion to be easily changed. Finally, this scheme permits the objects to be

4

discovered at runtime. “Discovery at runtime” means that SOA loads into the software only the
objects that are available to be used. If a search criterion is not needed, then it is simply removed.

2.2 Visualization

Now that the science user has found the time(s) that match the geometric criteria, the next step is
to look at a picture of the information. SOA allows the science user to select from several view
options: 3 dimensional perspective projection, 3 dimensional arbitrary observer, 2 dimensional
sky map and 2 dimensional trajectory plot. The perspective projection renders the view from the
point of view of a specified observer looking at a target. Generally, the observer is a spacecraft
and the target is a celestial body. The arbitrary observer view is a parallel projection that is
rendered from an observer who can be arbitrarily placed in space by the user. The 2 dimensional
sky map is an equidistant cylindrical map projection of the celestial sphere as viewed from the
spacecraft. The 2 dimensional trajectory plot is a view of the spacecraft’s trajectory around the
target body. If the target body has satellites, this display also shows their orbits. This plot can be
viewed from the ecliptic or the equatorial planes. The user can select items to be included in the
picture such as: Right AscensiodDeclination (RA/Dec) grid, latituddlongitude grid, stars,
magnetic field, planets, satellites, lighddark terminator, and other geometric information. If an
item is not appropriate for a view, that selection is not made available to the user. For example, in
the perspective view, the spacecraft trajectory can’t be seen since the observer is the generally the
spacecraft itself. The selection to make it visible is not presented to the user. The user can also
chose to see more than one view in a single window or multiple windows can be rendered with
different views.

In Visualization the same hierarchical approach as Opportunity Search has been taken. The real
world coordinates and formulas plus the characteristics of the real world entity form the software
model objects. The actual Java 3-D constructs form the primitive objects. For example, an
RA/Dec grid is comprised of a model object that has its properties of a line model, a text model,
the grid spacing for both Right Ascension and Declination, the label spacing for both, etc. The
associated primitive sets the Java 3-D components of appearance and the attributes for both the
lines and the labels. This approach again allows a specific project to easily add, modify,
customize or delete objects that are specific to that particular project. All of the objects are
discovered at runtime.

5

FD WIPPM. R L

"I*, "3.1 I ml I

Rsr,r JDUoZmm R ~ . O R l o O n ~ l n s I Y I N R e I a . X A l k * l ~ O O l i d TOmPmlO*s
DlP"

Figure 2.2 is a perspective projection of the closes approach of the Cassini spacecraft to
Enceladus. The red square is a field of the view of the camera projected onto the sky. It is red
because it violates a constraint.

I O "

t , * , , * , "I ,
p~(*,l*. ne^ V O M Z ~ C I I I R ~ D C ~ D O W U V I ~ U e # L l e A (A * + O n l O l FOC?+*lInIDdd

s,sn

Figure 2.3 is an arbitrary observer view of the pole of Saturn. In this view the spacecraft
trajectory is also shown. The lines originating at the spacecraft are various physical phenomena.

6

2.3 Observation Design

Once the user sees a picture that conforms to the desired objectives, an observation design can be
started. The science user can frrst choose to just look at the time and by specifying the spacecraft
attitude, the user can look at a display that shows the scene, but also contains an instrument field
of view. A field of view is an instrument aperture; generally they are squares, rectangles or
circles. These fields of view can be projected onto the target - similarly to the way a person uses
a camera with a viewfinder. This projection gives the scientist an idea of the coverage of the
observation. Once the science user is satisfied with the coverage and the view, an observation
type is selected.

The current choices are start-stop mosaic, continuous scan, roll about an axis, and stare. A start-
stop mosaic consists of a series of pictures that are taken. The spacecraft or instrument platform
or the instrument itself is moved to a location and waits while a picture is taken. This step is
repeated until all the desired pictures are taken for the observation. A continuous scan is a series
of measurements made at different pointing geometries while the spacecraft or instrument
platform or the instrument itself are continuously moving. Roll about an axis is an observation
that is performed while the spacecraft is rotating around a single axis. The stare observation is
simply one that is performed while the spacecraft maintains a fixed attitude with respect to the
target. Each observation type has properties that must be selected. There are general properties
such as the target and observer that apply to all of the observation types.

There are also properties that are specific to a particular type of observation such as the roll axis
for a roll about an axis observation. Once the properties are selected, the user can choose to view
the observation again with the new information that has been provided. At this point the scientist
may want to animate the depiction to see how the scene changes over time. The user may review
and change the properties and re-plot the depiction as many times as desired.

iown is a scoping level

7

For Observation Design the software objects come in two flavors. The main object contains the
information common to these observations like the start time and the target. The secondary object
specifies the information that is specific for that type of observation, like the number of pictures
to be taken. In addition to these objects, this area has objects that map the SOA observation
properties to other tools such as the software that contains the plan of spacecraft activities. Most
spacecraft missions have their own way of specifying observations and other spacecraft tasks (or
activities). This area has a strong hierarchical component so that missions will have an easier time
adding mission specific observations.

2.4 Constraint Checking

At this point if the science user has not already performed constraint checking on the observation,
it is time to make sure that there are no constraint violations. The constraint violations are of two
varieties. The first variety is the group of constraints that are geometric in nature. This group
consists of various exclusion zones or impediments to performing the observation. An exclusion
zone might be an angle that specifies a region where the Sun is too bright for an instrument or an
area where another bright body is visible and may hurt a sensitive instrument. Sometimes it is not
damaging if the distance from the bright body places the instrument in a safe zone or if the
exposure to the bright light is below a given threshold. The exclusion zone object has four
variations. It can simply be an angle that must be excluded. It can be an angle with a distance
attached. It can also be either of these two with an exposure time attached. Impediments may not
be dangerous, but may cause the observation not to meet its objectives. An example of this case
might be the occulting of the target body by another body or that another body is transiting across
the target body in such a way as to spoil the observation. Currently, this type of violation hasn’t
been implemented. The second group consists of state violations. Examples of this type could be
that the spacecraft maximum rates and/or accelerations are exceeded. The converse could also be
true - the minimum rates and/or accelerations are not met. For either type of constraint, the user
enters the required properties through the drag-anddrop user interface. If the user finds that the
observation causes constraints to be violated, the observation can be modified and the process can
begin again.

I
Figure 2.4 shows the Constraints rule builder with the angle exclusion zone selected.

8

Flight rule objects consist of building blocks objects that can be combined to create the constraint
rules. Each exclusion zone type has its own combined object. The drag-anddrop graphical user
interface can be used to create the mission specific rules for exclusion zones. In addition, there
are rate objects and acceleration objects. Since it is possible to have spacecraft rates, instrument
platform rates and articulating instrument rates, the specific space mission can tailor these
building blocks to their own needs also using the graphical user interface. The object hierarchy
allows missions to add different types of rules that haven’t been provided by SOA.

2.5 Communications

The last task that the science user performs using SOA is to place the finished observation in the
plan of activities with all of the other observations and the engineering tasks (like calibrations and
maneuvers). SOA is the first tool designed to communicate with other tools used for developing
the plan of activities for the spacecraft. In the past the scientist had to create the observation and
then the information had to be reentered into the software that would prepare it for the
spacecraft. Now SOA communicates with that software either by using inter-process
communications (IPC) or through the use of files. The planning software provides a visual
timeline and resource consumption graphs. SOA communicates with this software tool using
inter-process communication. Observations are sent directly to this software by simply pressing a
button. Other legacy software requires input via files. SOA, also, creates these files so that they
can be ingested into these legacy tools.

In addition to allowing the science user the ability to send their observations designs to other
software, SOA allows the science user to share the observation information with other scientists.
SOA can save the observation information in the form of a C-Kernel file (a binary file that
contains quaternions for the spacecraft’s attitude over time). The C-Kernel file is a relatively
standard file used by many scientists and engineers in the space industry. By producing this file,
SOA permits software applications written by others to ingest the observation information. C-
Kernel files are maintained by the Planetary Data System Navigation and Ancillary Information
Facility (NAIF) at JPL

Communication objects exist at two levels. The first level of objects contains the data that forms
the observation. These objects have the properties for the observation and how those properties
are to be translated to the planning software tools. The second level of objects contains the
messages that are to be sent to the planning software through IPC. A corresponding set of objects
contains the information on how to write the information to the files (the observation file and the
C-kernel). Again, this separation allows projects to easily add or change the data or the format to
meet their specific needs.

3.0 Technical Challenges

Creating SOA with these capabilities has not been an easy task. When SOA began, Java 1.2 had
not been released and Java 3-D had had only a few releases. There were performance issues,
memory leaks (on the SOA side as well as the Java side), and questions of accuracy in the
graphics presentation. In addition, translating the data so that it could be recognized by other
software has been difficult in terms of making sure that apples were translated as apples and not
to oranges. At this time Java and Java 3D have made significant advances and SOA has had the
support of Java experts at Sun. Additionally, SOA has been supported by several members of the
science community in overcoming the obstacles. The end result is a reliable, stable SOA
containing a wide variety of fully functional capabilities.

9

4.0 Conclusion

In conclusion, the approach that has been taken in creating SOA has been to keep the scientist in
mind at all times. It began by collecting the science user’s needs and proceeded by keeping this
user involved throughout the project. The tool fills a void that has existed since science
instruments were placed on a spacecraft. Many people have envisioned a tool of this nature. SOA
is the beginnings of all those visions. Over time it will continue to improve to meet those
expectations. But most importantly, SOA enables the scientist to create hidher observation easily.

References:

Belhe, U. and A. Kusiak, The House of Quality in a Design Process, International Journal of
Prod. Res., Vol. 34, No. 8,2119-2131, 1996

Acknowledgements

The work described in this paper was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

We would also like to thank the Cassini Project for their support.

10

