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Abstract 

NASA has a need for planning and scheduling 
systems that are expressive enough to encode 
real-world problems, flexible enough to keep up 
with shifting problem requirements, and 
powerful enough to provide high quality 
solutions within reasonable time bounds. These 
competing demands are particularly difficult to 
meet for the many NASA planning and 
scheduling problems that contain interacting 
combinatorial optimization sub-problems. 

General purpose planners are expressive and 
flexible, but perform poorly on these complex 
problems. Combinatorial optimization solvers 
have excellent perfonnance, but are only 
applicable to sub-problems. This paper describes 
a simple method for integrating certain kinds of 
combinatorial sub-problem solvers within a 
general purpose plannerhcheduler framework 
that demonstrably increases solution speed and 
quality. 

Introduction 

Many NASA observation scheduling 
problems are quite large, often containing 
hundreds or even thousands of observations. It 
is difficult to find high quality solutions to 
these problems within reasonable time 
bounds. The problems are often too large and 
complex to make globally optimal solutions 
practical, and even good locally optimal 
solutions can be computationally expensive. 
Problem-specific scheduling algorithms can 
exploit the problem structure to find high 
quality solutions more quickly, but they are 
expensive to develop and must be redesigned 
if the problem specification changes. This is a 
real concern: the problem specification often 

evolves throughout the mission life cycle as 
the problem and mission trade space become 
better understood. 
General purpose scheduling algorithms can 
accommodate evolving problem 
specifications, but perform poorly on these 
hard problems because they have little 
knowledge of the problem structure. 
This paper discusses a middle-ground 
approach that improves the performance of 
flexible general purpose schedulers by 
identifjmg the combinatorial optimization 
sub-problems and coordinating specialized 
solvers for these sub-problems. 
For example, combinatorial sub-problems 
that occur in NASA observation scheduling 
problems include: 

schedule a set of observations given 
constraints when they are visible and 
minimum slew intervals between adjacent 
observations (traveling salesperson 
problem with time windows) 
Assigning observations to fixed downlink 
opportunities (bin packing or k-knapsack) 
Select minimum number of observations 
that will cover of a region-of-interest (set 
covering) 

Several of these sub-problems may occur 
within a single observation scheduling 
problem, along with other resource and 
operations constraints. This paper refers to a 
scheduling problem that contains interacting 
combinatorial sub-problems as a “composite” 
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problem, and refers to the individual sub- 
problems as “elemental” problems. 
One straightforward method for incorporating 
these sub-problem solvers is to simply join the 
search control rules for each of the sub- 
problems. This approach can be employed 
when all of the problems can be expressed in a 
single search formalism such as iterative 
repair (IR) or integer programming (IP). 
In the remainder of this paper we define a 
scheduling problem with interacting sub- 
problems (TSP and bin-packing), encode it in 
a general purpose scheduler, and discuss how 
to incorporate specialized solvers for the two 
sub-problems. The performance of this 
method is then compared to two altemate 
solution methods: integer programming and 
iterative repair with domain-independent 
heuristics. 
The IR approach with integrated sub-problem 
solvers yields superior anytime performance 
over the ‘practical’ region of the performance 
vs. time curve, and the IP solver dominates the 
optimal region of the curve. The IR approach 
has the added advantage that it integrates more 
easily with general purpose planning & 
scheduling systems than does IP. 

An Observation Scheduling Problem 

A common NASA scheduling problem is 
observation scheduling. The objective is to 
schedule as many observations as possible 
from an oversubscribed list, subject to 
constraints on target visibility and onboard 
data storage capacity. The acquired data must 
be downlinked during time intervals when a 
ground receiving station is visible and 
available. There may also be setup times and 
mode constraints that depend on adjacent 
observations. 
For purposes of this paper we identify a 
specific instance of the observation scheduling 
problem derived from the Space 
Interferometry Mission. This example will be 

used throughout the paper to ground the 
discussion and evaluate the methods 
described here. We refer to this problem as 
the tiling problem, for reasons that will 
become clear below. 
One of SIM’s primary objectives is to acquire 
interferometric measurements of the celestial 
sphere. Each observation covers a very small 
region of the sky, called a “tile”. To observe 
the entire celestial sphere, each of over a 
thousand overlapping tiles must be observed 
for about half an hour in two different 
orientations. Slewing the spacecraft between 
adjacent tiles takes several minutes, and 
proportionally longer between distant tiles. 
The observation campaign must be 
completed within as short a time as possible 
to maximize science return. 
This much of the problem is a traveling 
salesperson problem (TSP) in which the tiles 
are cities and the cities are uniformly 
distributed over a sphere. However, there are 
additional constraints that complicate the 
problem. To avoid instrument damage the 
instrument must not point within several 
degrees of bright bodies such as the Sun, 
Jupiter, Saturn, and the Earth. These move 
over the course of the campaign, which 
imposes several windows during which tile is 
not observable. This makes it a TSP with 
multiple time windows. 
The spacecraft has limited onboard memory, 
so the data must be downlinked, but only 
during certain times when a ground receiving 
station is visible. Allocating observations to 
downlink windows can be expressed as a bin 
packing problem. 

Formal Specification of the Tiling Problem 
An instance of a tiling problem describes the 
observations to be made and the 
opportunities for downlinking the 
observation data. A solution to a specific 
tiling problem consists of a start-time for 
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each observation or an indication that the 
observation is to be ignored. 
What follows is a formal description of the 
tiling problem, as well as a proof that the 
tiling problem is NP-complete. The proof is 
based on a reduction of the Hamiltonian cycle 
problem to the tiling problem. 
More formally, an instance of a tiling problem 
TP is an 6-tuple <V, D,  t, w, c, s> where Vis a 
set representing observations, D is a set 
representing downlinks, t is a function that 
maps each v E V to a set of non-overlapping 
intervals (the time-windows of an 
observation), w is a function that maps each v 
E V, each d E D, and each pair of 
observations ( V I ,  v2), V I  and v2 E V to a 
positive real value (duration: either duration of 
a downlink, duration of an observation, or 
duration to traverse fiom one observation to 
another), c is a function that maps each v E V, 
and each d E D to an integer (capacity: either 
the amount memory required to store an 
observation or the capacity of a downlink), 
and s is a function that maps each d E D to the 
positive real numbers (start time of a 
downlink). 
It is assumed that downlinks and their 
associated durations do not overlap 
temporally. Interesting aspects of the tiling 
problem that set it apart from other problems 
are 1) every downlink is used, 2) data cannot 
be carried over a downlink (all data is 
downlinked or erased), and 3) observations 
can be skipped. Thus, we can reformulate an 
TP T as an equivalent TP T where we need 
not consider any w(d E D )  or w(v E V) by 
adjusting the associated time-windows t(v E 

V) and adjusting the durations w(vl,v2 E V). 
Therefore, we consider t(v E V) to be a set of 
intervals that represent possible start-time 
assignments for v. 
A solution is a 2-tuple <I, st> where I is a 
subset of V representing ignored observations 
(ignore-list), and st is a function that maps 
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each v E V-I to the real numbers representing 
the assignments of start-times for the 
observations such that they can be 
accommodated by the downlinks. A capacity- 
optimal solution is a 2-tuple <I, st> that 
maximizes the sum of data actually 
downlinked. A cardinality-optimal solution is 
a 2-tuple<I, st> that maximizes the number of 
observations in V-I. The associated decision 
problem would be a TP with a bound b, 
where b is the minimum amount of data 
downlinked for success of a summed- 
capacity-decision problem (TPSD), or b is 
the minimum number of observations 
required for success of a cardinality-decision 
problem (TPCD). 

The Tiling Problem is NP complete 
Proof 1: Both the TPSD and the TPCD are 
NP-complete. Each problem is clearly 
contained by NP in that a solution can be 
guessed in polynomial time (i.e., guess 14 
observations to ignore and IV-4 start-times 
for a total of Iu guesses) and verified (i.e., 
ensure all IV-4 start-times fall within a valid 
window; sum the appropriate c(v) values for 
each downlink d E D and compare to the 
capacity of the downlink c(d), and either sum 
c(d) values or take the cardinality of I to 
evaluate the decision). 
Proof 2: Both the TPSD and the TPCD are 
NP-hard. Every instance of a Hamiltonian 
cycle problem (HCP), which is NP-hard, can 
be reformulated as a TPCD or TPSD as 
follows. An instance of a HCP is a graph (V, 
E). A solution is a simple cycle that contains 
that contains all v E V. Thus, we must map a 
HCP <V, E> to a TP <V, D, t, w, c, s> and 
show that the use of decision criteria for 
TPSD and TPCD do not affect the 
transformation. To map HCP( V) to TP( V), we 
choose a vertex in HCP(V) and call it a. We 
also create use a duplicate vertex to a called 
a. Thus TP(V) = {a, a} + HCP(V) - {a}. 
Henceforth, TP(V) is referred to as V. D 

Page 3 of 8 



Knight & Smith-Coordinating sub-problem solvers - 

contains a single downlink d. For each v E V, 
if v = a, t(v) = {(l,l)}, else if v = omega, t(v) 
= {(lV[,lVl)}, otherwise t(v) = ((2, IV(-1)) (Le., 
any time assignment before the downlink is 
ok, with alpha coming first and omega coming 
last). For each VI E V, v2 E V, ~ ( ( V I ,  v2)) = 1 if 
(VI, v2) E E, 00 otherwise. Note that a = o with 
respect to E. For the only d E D, c(d) = Iq; for 
each v E V, c(v) = 1 (i.e., the only downlink 
has the capacity to handle all observations). 

For each observation v E V, x(stv) is the 
assigned start-time for observation v. x(stv) is 
a continuous, real-valued variable. These are 
the start-time variables. 

For each observation v E V, for each allowed 
time interval (window) (z, y) of t(v), x(tvzy) 
is an integer binary value that is 0 if x(stv) 
should be contained in the interval (z, y), and 
1 if not. These are the time-window 
assignment variables. - 

Note that the sum of all v E V-I for a solution 
I is the same as the cardinality of V-I, thus the 
objective h c t i o n  for both the TPSD and the 
TPCD are equivalent for this formulation. By 
Lemma 1, a solution exists for the HCP only if 
a solution of value exists for the TPSD (or 
TPCD) making these problems NP-hard. 

For each pair of observations (VI, v2) where VI 

and v2 E V, x(wvlv2) is an integer binary 
value that is 0 if x(stv1) > all other x(stv) I 
x(stv) < x(stv2) and 1 otherwise (i.e., v1 
immediately precedes 172). These are the 
observation-adjacency variables. 

Therefore, the TPSD andthe TPCD are NP- 
complete. 0 
Lemma 1: A solution exists for the HCP only 
if a solution of value lyl exists for the TPSC 
(or TPCD). We can convert any solution <I, 
st> to a TP into a solution <VI, v2, . . . v,> of an 
HCP. We assign a = o = v1 of the 
permutation. Now, for each v E TP(V), we 
assign the permutation order vst(v). There 
must exist a path from a through all other 
vertices and terminating at a, otherwise there 
must exist non-adjacent vertices v, and v b  that 
are adjacent in the permutation, but this would 
require a difference between the start-times of 

contradiction. 
1 = st(vb) - st(v0) = w((v,, vb)) = 00, a 

Integer Programming Formulation 

We give a formulation of the TP as a mixed 
integerhear program (MIP) using the 
standard notation of variables being a vector 
x, and constraints being linear inequalities on 
x. This formulation is based on the TSP 
formulation of Grotschel & Holland (1988) 
and the bin-backing formulation of Padberg 
(1 979). 
Variables: 

Cons train ts : 
For each v E V, the sum of all x(tvzy) = Iq -1 
(i.e., only one observation assignment to all 
of its associated time-windows is allowed). 
These are the time-window unit constraints. 
We assume a value b that is greater than any 
possible assignment to start-times including 
the case if all start-times occur after the last 
downlink. For each ~ ( w v I v ~ ) ,  x(wvlv2)b - 
x(stv1) + x(stv2) 2 w(v1, v2). These are the 
observation adjacency constraints. 

For each x(tvzy), x(tvzy)b + x(stv) 2 z, and - 
x(t,,zy)b + x(stv) I y (i.e., the start-time of an 
observation must be contained by its chosen 
time-window and be ignored by all other 
time-windows). These are the start-time 
containment constraints. Note that it is 
perfectly feasible to ignore all time-windows; 
it is the role of the objective function to 
enforce that as many observations are 
assigned (within its criterion) as possible. 
We assume a mapping of time-windows of an 
observation v to each downlink d E D. This 
set of time windows is referred to as t(v, 6). 
For each downlink d, add the constraint 
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(Le., the skipped capacity must be no less than 
the total possible skipped capacity minus the 
downlink capacity for any given downlink.) 
These are the downlink capacity constraints. 

Iterative Repair Formulation 

For this solution approach the tiling problem 
was encoded in the ASPEN planning and 
scheduling framework (Chien et al., 2000). 
The elements in the ASPEN domain modeling 
language are activities, states, resources, and 
constraints. An activity is an action the 
spacecraft can perform, such as an observation 
or downlink. Activities have a start time and 
duration and may overlap each other. A 
resource represents a physical or logical 
resource of the spacecraft, such as the onboard 
memory. A state represents a physical or 
logical state of the spacecraft, such as the 
spacecraft attitude or whether a given ground 
station is visible. Each state and resource is 
represented as a timeline that shows how it 
evolves over time. 
The activities, states, and resources are related 
by constraints. Each activity instance imposes 
constraints that must be met whenever that 
instance is in the plan. These can be temporal 
constraints among activities, resource 
constraints (e.g., an observation uses d 
seconds of onboard storage tape, where d is 
the duration of the observation), and state 
constraints (the ground station must be visible 
during a downlink). 
The tiling problem was encoded as follows. 
The activities are obsewe(target), downlink, 
and slew(a,b); the state is attitude; and the 
resource is onboard memory. An 
obsewe(target) activity consumes onboard 
memory and requires that the attitude state be 
equal to target. The downlink activity restores 
onboard memory and requires that the attitude 
be GROUND-STATION. The slew(’, B) activity 

requires that the attitude is A just before the 
activity and B after the activity. The duration 
of the slew activity is the time it takes to 
slew the spacecraft between attitudes A and 
B. 

An instance <V, D, t, w ,  c, s> of the tiling 
problem is expressed in ASPEN by one 
observe activity instance per observation in 
V, one downlink activity per opportunity in 
D. The duration and start time of the 
downlink windows are specified by w and s 
respectively, and the duration and start time 
of the observation windows are similarly 
specified by w and v. The duration of 
slew(A,B) is specified by w: VxV-;;)positive 
integers. A solution consists of a subset of 
observe activities that satisfies all of the 
constraints. The objective function is a 
weighted sum of the activity score (higher is 
better) and the makespan (smaller is better). 

Iterative Optimization Search Algorithm 
The tiling problem is solved by an iterative 
optimization algorithm (Rabideau et al., 
1999). At each step in the search we have a 
schedule that might violate some or all of the 
constraints. Iterative repair analyzes each of 
these violations, selects one, and performs 
operations on the schedule to remove the 
violation. Repair operations include 
reassigning an observation’s start time and 
moving it to the ignore-list. A given repair 
may lead to more violations, which are 
handled similarly. 
Once a valid schedule is found, iterative 
optimization performs operations on the 
schedule that improve one of the preferences. 
A preference is an element of the objective 
function, such as “minimize the number of 
ignored observations”, “maximizing the 
amount of downlinked data”, and “minimize 
makespan”. The objective function is a 
weighted sum of these preferences. 
Optimization operations include removing 
observations from the ignore-list and 
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selecting an earlier start time for an 
observation. 

Integrated Solvers Formulation 

The iterative optimization method can be 
improved by exploiting some knowledge of 
the problem structure. The tiling problem 
contains two interacting combinatorial 
optimization sub-problems: TSP with time 
windows (for finding a minimum-makespan 
tour through the celestial sphere) and bin 
packing (for assigning observations to 
downlink opportunities). 
One way to provide this knowledge is to 
analyze the problem and develop a specialized 
search algorithm or problem-specific 
heuristics. However, these can be expensive to 
develop and are brittle to changes in the 
problem formulation. An alternate approach 
that we explore here is to identify the 
combinatorial optimization sub-problems and 
employ control knowledge from existing 
solution algorithms that have been developed 
over decades of study in the research 

A key question is how to coordinate the two 
solvers. Because the TSP and bin-packing 
problems interact, a high quality solution to 
one problem may be incompatible with high 
quality solutions to the other; and both sub- 
problems may interact with additional 
constraints in the overall problem. 
We identified local-search versions of the bin 
packing and TSP algorithms, and added their 
control rules into the iterative repair scheduler 
for the overall problem. The iterative repair 
framework then decides which rules to apply 
in any given step by choosing the rule that 
leads to the largest local gain in feasibility or 
quality. The sub-problem heuristics guide the 
overall problem toward high quality solutions 
to the sub-problems, and conflicts between the 
sub-problems solutions are arbitrated by 

community. 

evaluating their impact on the overall 
problem. 
This is an admittedly unsophisticated 
method, yet it performs quite well. It is also 
flexible to changes, in that the heuristics can 
be easily modified as new sub-problems are 
added, removed, or changed. Future work 
will investigate more sophisticated 
algorithms and compare them to this baseline 
performance. 
The TSP heuristic makes use of insertion 
algorithms (choosing randomly among either 
random insertion, insert furthest, or greedy 
insertion). These techniques give good TSP 
performance with light computation. The 
TSP heuristics also make use of 2-opt swaps 
(Hochbaum 1997) 
The bin packing solver utilizes the “biggest- 
first” algorithm, which first orders the items 
from largest to smallest, then places them 
sequentially in the first bin in which they fit. 
This strategy is always within approximately 
22% of optimal, and no strategy can 
guarantee performance better than 22% of 
optimal unless P=NP (Hoffman 1998). 

Performance Results 

Empirical performance results are shown in 
Table 1. Each of the three solution methods 
(uninformed iterative repair, uninformed 
integer programming, and informed iterative 
repair) solved the same 100 random instances 
of the tiling problem. Each problem instance 
had a pool of 50 observations to be 
scheduled, an average of 25 windows of 
availability per observation, and 16 
downlinks. The actual number, start time, and 
duration of the visibility windows and 
downlink windows for the 100 instances 
were randomly generated according to a 
normal distribution about these mean values. 
The reported value for the schedule quality 
(score) is normalized against the maximum 
possible score if all observations were 
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scheduled. This ensures, for example, that 
perfect schedules for problem instances with 
different global maxima would be reported as 
being of equal quality. 
The running times reported are for a Sun Ultra 
2 computer. The base for the temporal log 
scale is 1.5. 

Discussion 
Integer programming produces the highest 
quality results, but only for running times over 
15 hours. For running times between 10 
seconds and 15 hours the dominant method is 
iterative repair with incorporated bin-pack and 
TSP solvers. For running times under 10 
seconds iterative repair produces the best 
solutions, though informed iterative repair is a 
close second. 
Uninformed iterative repair does not require 
knowledge of the problem structure, and 
utilizes only problem-independent heuristics. 
It performs what is essentially a randomized 
local search, where the neighborhood 
operators improve either feasibility or quality. 
This means that it does not need to be “tuned” 
if the problem changes, but that same lack of 
knowledge negatively impacts performance. 
For the tiling problem, uninformed iterative 
optimization quickly finds a feasible solution 
and improves it to a local optima. However 
even with very long running times the local 
repair moves cannot improve much on that 
local optima. Performance quickly asymptotes 
to a middling quality solution. 
Iterative repair informed by sub-problem 
heuristics performs much better. The sub- 
problem heuristics guide the overall problem 
out of local minima and towards high quality 
solutions to the sub-problems. However, the 
best overall solution may require sub-optimal 
solution to the sub-problems. Conflicts 
between the sub-problems solutions are 
arbitrated by evaluating their impact on the 
overall problem. Although this is admittedly 
unsophisticated, it performs well. In fact, it 

dominates the optimal IP solver for running 
times under 15 hours. 
The performance results are for problem size 
of fifty observations. The full tiling problem 
can have over a thousand observations. To 
obtain high quality solutions to these large 
problems within reasonable time bounds, 
methods that dominate at smaller run times 
are clearly preferable. Of the three, iterative 
repair with sub-problem heuristics performs 
best over this ‘practical’ region of the time 
vs. performance curve. 

Conclusions 

Many real-world NASA scheduling problems 
require good “practical” performance-that 
is, high quality but not necessarily optimal 
solutions that can be obtained within 
reasonable computational resources. The 
solution algorithms must also be flexible to 
changes in the problem formulation. That is, 
incremental changes to the problem should 
require small inexpensive changes to the 
encoding and result in similar performance 
without costly redesign of the solution 
algorithm. 
Monolithic IP solvers are one common 
approach for solving these kinds of 
scheduling problems. Although they provide 
high quality or even optimal solutions, they 
have several limitations: they are inflexible to 
changes in the problem specification, and 
good performance requires heuristics derived 
from deep analysis of the problem 
structure--often a significant undertaking. 
Iterative repair appears to provide better 
practical performance and greater flexibility. 
Uninformed iterative repair outperforms 
uninformed integer programming over the 
practical region of the performance curve. 
reasonably well over the practical range of 
However, neither uninformed approach is 
fast enough for large problems such as the 
tiling problem. 
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Local search sub-problem solvers can be 
integrated within an iterative-repair 
planner/scheduler by simply taking the union 
of the local search rules. Exploiting this sub- 
problem knowledge improves performance 
considerably for the iterative repair solver, 
enabling it to break out of local minima. This 
approach also preserves flexibility: when the 
problem changes, it is relatively easy to 
identify sub-problems and introduce control 
knowledge as compared to doing a full-up 
analysis of the problem structure. 
Overall this work indicates that high quality 
solutions to large scheduling problems can be 
obtained within reasonable computational 
resources if (a) the problem contains 
combinatorial optimization sub-problems and 
(b) good local-search solution algorithms exist 
that make few if any assumptions about the 
global problem structure. 

Future Work 

The solver integration methods discussed in 
this paper are limited: the solvers must rely on 
local assumptions about the problem structure, 
and it is susceptible to getting trapped in local 
minima because negative interactions among 
solvers are resolved locally (biggest gain to 
the objective fhction wins). More 
sophisticated methods are needed to overcome 
these limitations. Our future work will 
investigate such methods in order to improve 
on the performance results reported here. 
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