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Goal: Demonstrate the power of high-end and scalable cost-effective computing environments to 
further our understanding and ability to predict the dynamic interaction of physical, chemical, 
and biological processes affecting the Earth, the solar-terrestrial environment, and the universe. 

Round 3 Competitively-Selected Awards: 
Earth System Modeling Framework ($9.8m over 3 years) 

Earth Science ($6m over 3 years) 

Killeen/NCAR - Part I: Core Earth System Modeling Framework Development 
J. MarshaWMIT - Part II: Modeling Applications for the Earth System Modeling Framework 
A. da SiIva/GSFC - Part 111: Data Assimilation Applications for the Earth System Modeling Framework 

A. Donnellan/JPL - Numerical Simulations for Active Tectonic Processes 
P. Houser/GSFC - Land Information Systems 
C.R. Mechoso/UCLA - Atmosphere-Ocean Dynamics and Tracer Transport 
J. Schnase/GSFC - Biotic Prediction: HPCC Infrastructure for Public Health and Env. Forecasting 

Gombosi/U.Mich - A High-Performance Adaptive Simulation Framework for Space-Weather Modeling (SWMF) 
P. Saylor/U.lllinois - Development of an lnteroperability Based Environment for Adaptive Meshes (IBEAM) with Applications 

P. Colella/DoE/LLNL - A C++ Framework for Block-Structured Adaptive Mesh Refinement Methods 

Space Science ($7m over 3 years) 

to Radiation-Hydrodynamic Models of Gamma-Ray Bursts 
T. Prince/Caltech - High-Performance Cornerstone Technologies for the National Virtual Observatory 2 
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JPL 

Common Component Architecture (CCA) 
A component model specifically designed for high-performance computing 
Supports both parallel and distributed applications 
Designed to be implementable without sacrificing performance 
Minimalist approach makes it easier to componentize existing software 
Components are peers 

No particular component assumes it is “in charge” of the others 
Allows the application developer to decide what is important 

Components interact through well-defined interfaces, or ports 
In 00 languages, a port is a class / 
In Fortran, a port is a bunch of subroutines 

A given component may provide a port - implement the 
class or subroutines 
The Go port is a special provides port - used to start the app’s first component 
Another component may use that port - call methods or subroutines in the port 
Links denote a caller/callee relationship, nof dataflow! 

e.g., IinSolve port might contain: so/ve(B A, - outx, B b) 

Credit: Jim Kohl and the rest of the CCA Forum 4 



JPL 

Common Component Architecture (2) 
The framework provides the means to “hold” components and 
compose them into applications 
The framework is the application’s “main” or “program” 
Frameworks allow exchange of ports among components without 
exposing implementation details 
Frameworks may support sequential, distributed, or parallel execution 
models, or any combination they choose 
Frameworks provide a small set of standard services to components 
Steps to run an application: 

Launch framework (use a GUI or a script) 
Instantiate components required for app. 
Connect appropriate provided and used ports 
Start first component 

i.e., click Go port in the GUI or call the Go port in a script 

CCA Forum is an open community working developing the CCA 
Currently, mostly DOE and academic 

Credit: Jim Kohl and the rest of the CCA Forum 5 
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JPL PYRAMID: 
Parallel Unstructured Adaptive Mesh Refinement 

Modern.. . Simple.. . Efficient. . . Scalable.. . 
Technology Description 

An advanced software library supporting parallel 
adaptive mesh refinement in large-scale, adaptive 
scientific & engineering simulations. 

State-o f-the-Art Design! 

Efficient object-oriented design in Fortran 90 and MPI 
Automatic mesh quality control & dynamic load balancing 
Scalable to hundreds of processors & millions of elements 

Application Arena 

Computer Modeling & Simulation Applications with complex 
geometry - - Electromagnetic and semiconductor device modeling 
Structural/Mechanical/Fluid dynamics applications U 

John Z. Lou, Charles D. Norton, & Thomas A. Cwik 
High Performance Computing Systems and Applications Group 
http://hpc.jpl .nasa. gov/APPS/AMR 

7 

http://hpc.jpl
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Multi-Scale Mesh: Geometry Driven 
Initial mesh, derived from a 
commercial mesh generator, 
contains large elements that 
preserve the t h i n-laye red 
geometry 
Pyramid library performs 
adaptive refinement of 
initial mesh in stages 

Hydrodynamic/ Maxwell 
equations: 

Problem solved using coupled 

Irregular FDTD for EM updates 
Box method for transport 
updates 

t 
5 

+ O  

-5 

0 2 4 6 8 _ _  
X X 

Our sample application is only concerned with building the mesh 

Credit: Tom Cwik 9 



Multi-Scale Mesh: 
Geometry Driven - Level 2 

2 4 6 8 
X 

Credit: Tom Cwik 
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10 



Multi-Scale Mesh: JPL 
Geometry Driven - Level 3 
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11 Credit: Tom Cwik 
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JPL 

Lessons from Basic Examples 

Writing these examples took about 3 months of 
part-time effort for two people 

Most of this effort was learning: 
What are components? 
What demonstration code is available? 
How do we build and run the demos? 
How do we extract the basics from the complex demos? 

Create, build, and run our basic examples in C++ 
Very little work in actual writing 

13 
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A Sample Pyramid Program 
P R 0 G R A M pyramid-example 
U S E  pyramid-modde 
irr@idt none 

! Stzltements omitted... 
type (mesh), dimension(2) :: meshes 
call P A M R I M T O  
call PAMR-LOAD-MESH-PARALLEL( meshes(l),in-jile) 
call PAMR-REPARTITTON( meshes(1) ) 
do i = 1, rehement-levd 

call PAMR-ERROR-EST( meshes(l), meshes(2) ) 
call PAMR-LO GICAL-AMR ( meshes( 1) ) 
call PAMR-REPARTITTON( meshes(1) ) 
call PAMR-PHYSICAL-AMR( meshes(l), meshes (2) ) 

end do 
call PAMR-ELEMENT-COUNT( meshes(2) ) 
call PAMR-VISUALLZE( meshes(2), “vi&e.@Y ) 
call PAMR-FTNALLZE() 

E N D  P R O G R A M  pLramid-example 

Note that this program looks object-oriented 
15 



JPL 
Fortran 90 Components? 

We observed that the main items passed across 
the interface are Fortran 90 pointers 
We had chosen to use the CCAFEINE framework, 
which requires code to be written in C++ 

We also could have used DCAFE, which allows simple 
use of BABEL, and thus permits code in Cy C++, 
Fortran 77, Java, and Python 

We decided to write a C++ version of the driver 
code that could pass Fortran 90 pointers 

J t  

16 
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Details of Componentizing the Software 
First, a test program was written that used a Fortran 90 pointer 

This was compiled into object code, to understand the routine names that 
the compiler was generating, so that these routines could later be called 
from C 
Additionally, the code was compiled to assembler, which was studied to 
understand how a Fortran 90 pointer was stored and passed 

Once these two issues were clear, it was a simple matter to write a C 
main program, and to wrap the Pyramid library with a C wrapper 

Neither of the main nor the wrapper are portable to other machines, OSes, 
or compilers, but the non-portable code is limited to two specific files, and 
can be rewritten for other environments . Next, a C++ main program was written, and a C++ wrapper was 

written around the C-wrapped Fortran 90 library . Once this was working, it was a simple matter to use the knowledge 
gained in the two-component Hello World example to turn the main 
and the wrapped library into components, and run them in the 
CCAFEINE framework 17 



Timing Results 
Two versions of the application were studied: 

The original Fortran 90 driver and Pyramid code 
The C++ wrapped codes running as components in the CCAFEINE 
framework 

Result 1 - user time of the applications, returned by the Unix time call: 
Average for the Fortran 90 application - 19.51 seconds 
Average for the component version - 19.49 seconds 

Result 2 = time measured from before the first library call to after the 
last library call within the driver program: 

Average for the Fortran 90 application - 20.37 seconds 

Average for the component version - 20.43 seconds 

Result 3 - timing one call to Pyramid made 1 million times 
The component version took 0.5% longer 

Subtracting 0.87 seconds system time - 19.50 seconds of non-I/(> 

Subtracting 0.91 seconds system time - 19.52 seconds of non-l/O 

Overall result - the overhead of componentization is negligible 18 



Lessons Learned 
There is currently a fair amount of learning associated with use the 
CCA Forum’s technology, including the CCAFEINE framework 

It may take 1-3 months for a computational scientist to be able to 
componentize an initial application 
A second should be able to be componentized fairly quickly 

The lack of a means to write Fortran 90 components is a serious 
shortcoming for many science applications 

It is possible to get around this shortcoming 
This introduces additional work for the componentizer 
This adds the chance for additional errors to come into the application 

Once an application is componentized, if the amount of work done in 
each component call is large when compared with the time needed to 
make a function call, it is likelythat the componentized version of the 
application will perform well 

19 
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