
A Common Component Architecture (CCA)
Experience Report and Performance Study

Y

Daniel S. Katz, E. Robert
Tisdale, Charles D. Norton
Jet Propulsion Laboratory
California Institute of Technology
{Daniel.S.Katz, E. Robert.Tisdale,
Charles.D.Norton}@jpI.nasa.gov

Parallel Applications Technologies Group
h tt p ://pat. j pl . nasa. g ov/

JPL

mailto:Charles.D.Norton}@jpI.nasa.gov

Goal: Demonstrate the power of high-end and scalable cost-effective computing environments to
further our understanding and ability to predict the dynamic interaction of physical, chemical,
and biological processes affecting the Earth, the solar-terrestrial environment, and the universe.

Round 3 Competitively-Selected Awards:
Earth System Modeling Framework ($9.8m over 3 years)

Earth Science ($6m over 3 years)

Killeen/NCAR - Part I: Core Earth System Modeling Framework Development
J. MarshaWMIT - Part II: Modeling Applications for the Earth System Modeling Framework
A. da SiIva/GSFC - Part 111: Data Assimilation Applications for the Earth System Modeling Framework

A. Donnellan/JPL - Numerical Simulations for Active Tectonic Processes
P. Houser/GSFC - Land Information Systems
C.R. Mechoso/UCLA - Atmosphere-Ocean Dynamics and Tracer Transport
J. Schnase/GSFC - Biotic Prediction: HPCC Infrastructure for Public Health and Env. Forecasting

Gombosi/U.Mich - A High-Performance Adaptive Simulation Framework for Space-Weather Modeling (SWMF)
P. Saylor/U.lllinois - Development of an lnteroperability Based Environment for Adaptive Meshes (IBEAM) with Applications

P. Colella/DoE/LLNL - A C++ Framework for Block-Structured Adaptive Mesh Refinement Methods

Space Science ($7m over 3 years)

to Radiation-Hydrodynamic Models of Gamma-Ray Bursts
T. Prince/Caltech - High-Performance Cornerstone Technologies for the National Virtual Observatory 2

Y

i,
a,
0

-
1

E

v
)
a

.- L
m

S

Y

L

c,
cd

n

C>
LL

v
)

cd
a
a

L

.- -
0

3

x

c
,

.- 3
T

Y

v
)

cn
(3

cn

cd
c
,

L

0

a 0 Q

Q

a

.- c,
.- -

U

.- c,

v
)

a

-

.- v

S

0

Q

0

.
I

v
)

0

0

-
 c
,

0

k

L

.
I

a,
c

c
,

c
,

L

c
,

cd
v
)

S

E"

-L

3

m

S

Q

0

a

> a
U

.- -

a

0

S

a

0

v
)

.-
a

U

0

0

U

a

Q

0

5 m
..

S

.
I

d

-

a,
U

a

cn
a

U

0

0

h

I

n

C>
C>

v
)

S

0

a

0

.- c,

.-

M

C

0

a

N

S

.- c,
.-

%

a

a

a S

a

0

S

0

0

c
,

L

c
,

-

-
 a >

U

a,
a S

0

Y

v
)

v
)

S

a,
0

v
)

c
,

c
,

.
I

.
I

h
,
U

v
)
t

7

8
I
.

I=
0

I
-

.

in

a

-

.- E

z a c,
r 0
S

.
I

c
,

Q

L

c
,

.- 0"
a

c
,

.- z
~

Q

a
a

II

U

S

c
,

L

.- a
c

a

c
,

c
,

E

a,
-

a

a

5

a,
U

0

v
)

Q

c
,

0

v
)

c
,

Y

a,
v
)

t

0

a,
L

a
U

0

S

Q

0

a,
> a,
U

.- -

T

a
cd
c

+

0

a,

a

m

a

3

m

Y

2 c, S

0

cd
.
I

C
I

3

0

m

L

c
,

0

a

0

--
k

a

>

a

II
c
,

c
,

S

I

S

.-
c
,

0

a,
al a
Y

.- 0

v
)

- I- .
0

0

cd
v
)

-
1

.-

v
)
a,
U

3

L

0

cd
a,
c
,

-
1

P

i

z
a

1

0
)

S

c
,

a

1

c
,

z
0

a,
.
I

e

c
,

>

m

S

E

0

Q

Q

3

c/)

.-
u

a

a,
c

c
,
 E

v
)

r

0

Q

Q

3

c/)

v
)
U

0

c
,

I- C>

I- 0

>
2

C
I

cn
a,
> S

a,
.- E

L

.
I

E
 a S

W

.- 3 0
+

0

.
I

S

a

U

a,
-

c
,

0

E" 0 cn
r 3

r
 0

a,
0

=
.

I

v
)

.-
in
W

E"

E

L

JPL

Common Component Architecture (CCA)
A component model specifically designed for high-performance computing
Supports both parallel and distributed applications
Designed to be implementable without sacrificing performance
Minimalist approach makes it easier to componentize existing software
Components are peers

No particular component assumes it is “in charge” of the others
Allows the application developer to decide what is important

Components interact through well-defined interfaces, or ports
In 00 languages, a port is a class /
In Fortran, a port is a bunch of subroutines

A given component may provide a port - implement the
class or subroutines
The Go port is a special provides port - used to start the app’s first component
Another component may use that port - call methods or subroutines in the port
Links denote a caller/callee relationship, nof dataflow!

e.g., IinSolve port might contain: so/ve(B A, - outx, B b)

Credit: Jim Kohl and the rest of the CCA Forum 4

JPL

Common Component Architecture (2)
The framework provides the means to “hold” components and
compose them into applications
The framework is the application’s “main” or “program”
Frameworks allow exchange of ports among components without
exposing implementation details
Frameworks may support sequential, distributed, or parallel execution
models, or any combination they choose
Frameworks provide a small set of standard services to components
Steps to run an application:

Launch framework (use a GUI or a script)
Instantiate components required for app.
Connect appropriate provided and used ports
Start first component

i.e., click Go port in the GUI or call the Go port in a script

CCA Forum is an open community working developing the CCA
Currently, mostly DOE and academic

Credit: Jim Kohl and the rest of the CCA Forum 5

a

8 rc U

a,
> 0
> S

cn
Y

-

.- .
I

$ 2 c
,

a

e
m

a,
z 3
;c

'
0

cn
a

0

0

a,
L

cn
a,
d

a

cn
3

0

c
,

.- -
 3

r

0

S

C
I

.
I

c
,

.- S

2

U

S

a

a,

L

c
,

2 3
4
:
0

cn
S

a,
C

I

C
I

.
I

z %

cn
3

0

> a, Q

-

.- L

cn
y
l

0

S

0

a

cn

.
I

c
,

L

c
,

cv
0

0

c\1

Q

a,
cn 0
ri

E

C
I

c
,

a,
LL

0

cn
S

3

x

cn
a

S

0

a

cn
S

L

C
.

L

c
,

.- c,

L

C
I

E" c a,
U

a, e

+

0

S

0

a
.
I

c
,

L

r
a
,

+
L

a,,
m

y
l

0
0
 e=

S

0

a 0
Q

Q

a

a S

m

.
I

c
,

.
I

-

-

.
I

.
I

8 a,
L

+

ld
cn

Y

S

Y
e
n

u
O

a,
=-

L
.

 U
'

.E $

2
U

-
>

a
a
,

+
a
,

S
L

 -
a
,

a
,r

-

=
o

a

Q
a

2

2

+

0

c
,

a

L

L

c
,

Y

a,
Y

a

0

cn
S

a,
0

cn

C
I

C
I

+

.
I

c
,

.
I

e
=

cn
S

a,
S

0

0

0

c
,

E"

.
I

3

s
a

a,
z E" 0 0

JPL PYRAMID:
Parallel Unstructured Adaptive Mesh Refinement

Modern.. . Simple.. . Efficient. . . Scalable.. .
Technology Description

An advanced software library supporting parallel
adaptive mesh refinement in large-scale, adaptive
scientific & engineering simulations.

State-o f-the-Art Design!

Efficient object-oriented design in Fortran 90 and MPI
Automatic mesh quality control & dynamic load balancing
Scalable to hundreds of processors & millions of elements

Application Arena

Computer Modeling & Simulation Applications with complex
geometry - - Electromagnetic and semiconductor device modeling
Structural/Mechanical/Fluid dynamics applications U

John Z. Lou, Charles D. Norton, & Thomas A. Cwik
High Performance Computing Systems and Applications Group
http://hpc.jpl .nasa. gov/APPS/AMR

7

http://hpc.jpl

d
0
0

(0

a

a

1

a

0

cn
C

I

n.
a,
c/)

0

c
,

c
,

a,
d

c
,

0

- L
0

a,
W

-

W

c/)
W

0

W

W

W

-

m
m

P
-

5

W

t-
W

n

w

>

5
-

J

LL
c/)
W

U

S

a S

F

0

a

.- J
W

>

0

CT
2

z

W

E

2

a,
> a,

U

a,
U

S

a,
X

a,
C

I

x

S

12

-

a,
-

a

0

Q

a,

L

-

0

h

12
S

c

S

.- C
I

.-
cn

0

S

C
I

.-
S

a,
>
U

a

.- L

.-

> (d

a 0
v
)

c

m

S

U

S

a,
X

a,

.- C
I

a

a,
U

a

a,

a,
a

.- L

z

c

C
I

.-
a

I

c
,

.
I

-
 z

a,
0
 3

.- >
a,
U

C
I

3

12 h

cn
a,
h

m L

-

a
a

S

0

m

.-
a,
>
.- CI

2
cn
a,
L

L
C

n

a
t
-

.- 0
,

a

U

-
 a,

.- I.

a,
L

e

Multi-Scale Mesh: Geometry Driven
Initial mesh, derived from a
commercial mesh generator,
contains large elements that
preserve the t h i n-laye red
geometry
Pyramid library performs
adaptive refinement of
initial mesh in stages

Hydrodynamic/ Maxwell
equations:

Problem solved using coupled

Irregular FDTD for EM updates
Box method for transport
updates

t
5

+ O

-5

0 2 4 6 8 _ _
X X

Our sample application is only concerned with building the mesh

Credit: Tom Cwik 9

Multi-Scale Mesh:
Geometry Driven - Level 2

2 4 6 8
X

Credit: Tom Cwik

1.5 2 2 -5
X

3

10

Multi-Scale Mesh: JPL
Geometry Driven - Level 3

0

0.5

-1 6

4
-1.5

2
P *

0

-2

-OS

-4

-09

-6
+ - 1

0 2 4 6 8
X

-1.1

-12

22 2.4 2s 3
X

11 Credit: Tom Cwik

d m
.

cn
a

a

X

W

.

S

a

S

0

E" s

-m

U

-

P 0
0

v
)
a

m

a,
Q

E

a

X

a,

a,
0

I

L

3

3

a, h

a

m- m- .

S

-

r

0

Q

0

a

%

S

0

(3

-
 2 c S

a,
S

0

0

0

0

a,
II:
a,

c
,

2 -

-

s 0

a,
I

Y

Y

Y

s

Q

.- L 0

v
)

'

.- e
0

Q

@ a,
-c 0

c
,

+
 -

0

Q

v
)
a,
v
)

3

a

m
 S
a

0

Q

r
-

8 a II:

S

a,
S

0

0

0

0

a,
II:
a,

2 C
I

2 -

-

s 0

E a, a 0 - a,
-c cd
a,
'"
3

-

-

.- 3
'

S

a,
S

0

0

0

0

a,
-

-

U

a,

v
)

S

3

a,
-c 0

c

L

-c
.,

L

.- 3

U
-

0

-c
c
,

E m

S

.- L
6

S

L

S

a,
c
,

L

a
'"
a,
U

> L
.

.- Q
8

=
3

0

JPL

Lessons from Basic Examples

Writing these examples took about 3 months of
part-time effort for two people

Most of this effort was learning:
What are components?
What demonstration code is available?
How do we build and run the demos?
How do we extract the basics from the complex demos?

Create, build, and run our basic examples in C++
Very little work in actual writing

13

d 1
a,
2 3 0

(1>

.

I
.

a,
c

m

S

N

S

a,
S

0

.

I
-

I
-

.

E
s

a,
Q

0

a,
Q

-
 0

3

C
I

8 8
I
.

.

I
.

I
.

a,

.- i! .
a

m

L
O

I
.

.

U

cd
h

L

0

U

a,
Q

Q

cd
U

S

cd
n

+ + S

S

a,

m- E

L

.

I

m-

m- -

c
)

m- I

I

L

m- 3

W

cn
a,
-
 E" cd

X

a,

S

a

0

e LL
I
.

0

3

0

cn
S

C
I

c
,

a,
S

o
a
,

Q
U

l

E
S

a,
0
-

L

e

0

.

cn
1L
a,
a,
3
I
.

0

a,
Q

3

-
 0

0

a

x

0

0

.

cn
a,
3

cn
cn e

-
 a S

a,
0

Q

S

a,
a,

a,
12
a,

.- c,

c
,

3
c
,

X
~

a,. m

i
 S

e

A Sample Pyramid Program
P R 0 G R A M pyramid-example
U S E pyramid-modde
irr@idt none

! Stzltements omitted...
type (mesh), dimension(2) :: meshes
call P A M R I M T O
call PAMR-LOAD-MESH-PARALLEL(meshes(l),in-jile)
call PAMR-REPARTITTON(meshes(1))
do i = 1, rehement-levd

call PAMR-ERROR-EST(meshes(l), meshes(2))
call PAMR-LO GICAL-AMR (meshes(1))
call PAMR-REPARTITTON(meshes(1))
call PAMR-PHYSICAL-AMR(meshes(l), meshes (2))

end do
call PAMR-ELEMENT-COUNT(meshes(2))
call PAMR-VISUALLZE(meshes(2), “vi&e.@Y)
call PAMR-FTNALLZE()

E N D P R O G R A M pLramid-example

Note that this program looks object-oriented
15

JPL
Fortran 90 Components?

We observed that the main items passed across
the interface are Fortran 90 pointers
We had chosen to use the CCAFEINE framework,
which requires code to be written in C++

We also could have used DCAFE, which allows simple
use of BABEL, and thus permits code in Cy C++,
Fortran 77, Java, and Python

We decided to write a C++ version of the driver
code that could pass Fortran 90 pointers

J t

16

JPL

Details of Componentizing the Software
First, a test program was written that used a Fortran 90 pointer

This was compiled into object code, to understand the routine names that
the compiler was generating, so that these routines could later be called
from C
Additionally, the code was compiled to assembler, which was studied to
understand how a Fortran 90 pointer was stored and passed

Once these two issues were clear, it was a simple matter to write a C
main program, and to wrap the Pyramid library with a C wrapper

Neither of the main nor the wrapper are portable to other machines, OSes,
or compilers, but the non-portable code is limited to two specific files, and
can be rewritten for other environments . Next, a C++ main program was written, and a C++ wrapper was

written around the C-wrapped Fortran 90 library . Once this was working, it was a simple matter to use the knowledge
gained in the two-component Hello World example to turn the main
and the wrapped library into components, and run them in the
CCAFEINE framework 17

Timing Results
Two versions of the application were studied:

The original Fortran 90 driver and Pyramid code
The C++ wrapped codes running as components in the CCAFEINE
framework

Result 1 - user time of the applications, returned by the Unix time call:
Average for the Fortran 90 application - 19.51 seconds
Average for the component version - 19.49 seconds

Result 2 = time measured from before the first library call to after the
last library call within the driver program:

Average for the Fortran 90 application - 20.37 seconds

Average for the component version - 20.43 seconds

Result 3 - timing one call to Pyramid made 1 million times
The component version took 0.5% longer

Subtracting 0.87 seconds system time - 19.50 seconds of non-I/(>

Subtracting 0.91 seconds system time - 19.52 seconds of non-l/O

Overall result - the overhead of componentization is negligible 18

Lessons Learned
There is currently a fair amount of learning associated with use the
CCA Forum’s technology, including the CCAFEINE framework

It may take 1-3 months for a computational scientist to be able to
componentize an initial application
A second should be able to be componentized fairly quickly

The lack of a means to write Fortran 90 components is a serious
shortcoming for many science applications

It is possible to get around this shortcoming
This introduces additional work for the componentizer
This adds the chance for additional errors to come into the application

Once an application is componentized, if the amount of work done in
each component call is large when compared with the time needed to
make a function call, it is likelythat the componentized version of the
application will perform well

19

CD X

U

CD

0

r
c

 0" 0
 5 U CD -

5
 z CD

7

CD

X

r
c

n

S

I
.

3

5

CD

0

3

0

CD

7
i
3

0

e

e

e

e

s CD

-

S

e
.

-. EL

Q

r

9,
 < CD

v
, 3

m

Q
 is

0

Q

0

0

CQ K
 -

0

5

U

v
,

C
Q

r

0

U

CD

c

v
,

L

cn

5 v
)

S

CQ CD

0

0

3

C
Q

0

3

CQ --
k

-.

a CD

..

-. v
,

Q

0

3

CD

Y
 5

CD

0"
8

Q

0

0

0
 >

0

9,

3

Q

S

v
,
3

CQ -.

v
, 3

-.
n

CD -

I
.

-

0

0

x

0

0
 >

ts

0

r

3

0

0

CQ c<
 -

CD X
 5 I.

3

3

C
Q
 -.

CD
 < CD

CD

cn

5

I
.

v
,

C
 3

(D

71

0

r' 3

v
)

Q

S

2
.

z 0
z 0

-
I

0

3

n

i! 0

3

0

D

0

Y

u
,

5

-. 3
 U

9,

2
 5

CD

s

0

3

CD

0

--
k

CD

3

0

Q

CD
 -

z I
.

-

9
)

3

Q

9,

U

U

0

CD
co 0

3

CD 5

-

CD

-

CD

u

r
c

 5
g

n

CD 'c

-. 0

0

n

r
c

IT

CD
-k

v
) 0

9,

d

n

n

CD
0

0

D

.
.

-. 0

m

v,
 a

S

r"

3 v
,

9,

Y

Y

CD

9,

7

n

CD

9,

5

7

v
, 0

CD Q

d
 -.

Ti;

71

0

2

i?;

I

n

0

rc

0

0

ru

r
c

r

1

7
3
 3

3

I
.

0
)

z 0
5

-

CD 9,

3

C
Q
 3

I
.

N

0

0

N

-. 3 e.

CD
 3

3

Y
 0

v
, 7
i

CD Y

r
c

 -

-. -

co 0

9,

U

U

I
.

3

CQ
-. v
)

v
)

S

CD

v
)

I
 v,

CD

U
 rc

N

0

0

cd

C

I
.

0

9,

e
.

0

3

3

CD

r

r
c

5

CD

IT

CD 5
v
,

Y

0

Q

0

0

D

9,

3

Q

