

I

Mission Data System

There Is a Big Gap Between..

What Systems Engineers do:
Define and analyze the capabilities a system must have
Establish the decomposition of functionality
Provide key algorithms for the accomplishment of these functions
Integrate, test, operate, and maintain a system

And what Software Engineers do:
Define the software architecture of a system
Provide the tools and techniques for software development
Design and build and test the software to provide the required functions

6/27/02 3

t f

Different Languages,
Different Methods

Mission Data System

Systems engineering is Software engineering is
outward looking in ward loo king

Mission scenarios
Functional decomposition
System analysis
Perfor ma nce req u i re men ts
Resource allocations
Command and telemetry
dictionaries
Flight rules and constraints
Control laws
Failure modes analysis
Fault protect ion
Test procedures

Languages, libraries, operating
systems.. .
Concurrent threads, processes,
memory management.. .
Real time execution
Patterns, abstractions, general
algorithms.. .
Data representation,
serialization.. .
lnterprocess communication
Dead locks, access violat ions,
exceptions.. .

6/27/02 4

Mission Data System a

What’s Wrong With This?

e If these two groups are genuinely doing different
unrelated things, maybe not much

It has worked - more or less - so far
But only when ...

Systems engineers understand the details
of what the software does
Software engineers understand the details
of what systems engineers want

The principle risk is miscommunication
What systems engineers want can be hard to express
What software engineers build can be hard to understand

6/27/02 5

I I

This Risk Is Increasing

Mission Data System

Trends toward rapidly increasing complexity raise
serious doubts about the future

Interactions make both systems and software difficult
Elements that work separately often fail to work together

The combinatorics of interaction is staggering
So it's not easy to get right

This is a major source of unreliability

6/27/02 6

I

I

I

- 0 3: cn
c

0

S

0

0

03
U

S

m f

0

0

T3

6

2

t

Mission Data System

Missions Are Becoming
More Complicated

* Systems must do
more complex tasks

They will interact with and alter

Multiple activities will compete with
their environment

system safety for time and
resources
Opportunistic science
will alter plans
Data may have to be intelligently
screened onboard before
transmission

6/27/02 10

Predictable, modal designs will not work as well for
the future

In situ environments and complex systems won’t cooperate
* Systems must be specified and operated

more abstractly

Success must be assured,
des pi te u ncertai n ty

Software will be called upon
to make this happen

No
6/27/02 11

We are more dependent on modeling for system level
analysis and verification of designs

Systems will be specified increasingly in the form of models
Correctness will be verified increasingly against models
of expected performance

Explicit models are vital to advanced technologies

Systems engineers are responsible
for the correct models to use

Consistency and interoperability
of models will be important
They must avoid contradiction,
confusion, and confounding constraints

6/27/02
Yes

12

Mission Data System

Software Engineering Is Also
Gettina More ComDlex

Software systems are increasingly bigger with
much more functionality

0 More and more disciplines previously confined to the ground
are moving onboard
Greater mission complexity drives performance and autonomy
Autonomous behaviors require software developments
to be integrated much more intimately

Reduced schedules and budgets
We must try to realize operational cost savings
through more automation

* We must design for reuse, and then reuse what we design
We must standardize and consolidate architectures
to share solutions to common problems

6/27/02 13

Software Engineering Is Also
Getting More Complex

Small scale, low level implementation stratagems have
to give way to more robust methods applied at a larger
scale

Potential interactions grow disproportionately (-n2) with size
Higher level abstractions must build upon solid foundations

Complex behaviors depend on automated reasoning
about the system

Reasoning requires understanding
Model-based technologies are the key

6/27/02 14

Where Is This Leadina?

The line between specifying behavior
and designing behavior is blurring

6/27/02 15

The Common Expression
of These Needs Is in Models

Knowledge in models is accessible for inspection
Providing algorithms and rules is not sufficient
Assumptions and beliefs must be exposed

However.

Models must be verifiable for consistency
Design, analysis, simulation, planning, and so on
require different forms
Consistency with one another and with the actual system is vital

Therefore I

6/27/02 17

State is Central

Mission Data System

Models must share a common definition
of system states

6/27/02 18

Imagine Driving Your Car

As the driver, you.. .
Have destinations and deadlines, and
desires for a safe and comfortable trip
Plan a route, make sure you have enough fuel
or stop along to way to get more, schedule the trip to meet your
appointments
Rely on gauges and your own senses to put together a comprehensive
set of beliefs about what’s happening
Turn on your headlights or wipers if you have to, observe the traffic
laws, navigate around obstacles, and adjust your driving to the weather
co nd it ions
Have expectations about other drivers, your car’s performance, and so
on, to inform your moves

6/27/02 20

In Other Words ...
You set objectives regarding the state of the world

*You monitor the state of the world

* You form a coherent notion of the state of the world and
anticipate its changes

*You adjust your intended actions to achieve a new
world state that meets your needs

You control the state of the car, which is part of the
world

6/27/02 21

Mission Data System a

Examples of Car Driving States

Where you and neighboring vehicles are and
how fast you’re driving
The wear condition of your wiper blades, brakes,
tires, and so on
How much fuel you have
Ignition and power system status
Engine speed and transmission gear selection
Brake and accelerator position, and steering angle
Temperature, oil pressure, battery charge, and so on
Headlight status, like on or off, and high or low beam
Windshield wiper speed
Where the sun is, and whether it’s night or day
Weather effects like wind, slipperiness, and visibility
What station your radio is tuned to

6/27/02 22

ExamDles of Car Drivincl Models

How the direction of travel depends on steering angle
How fuel depletion depends on driving speed
How battery charge varies with engine speed, headlight status, etc.
How the fuel gauge reading depends on fuel depletion and whether or not

How the pitch of sound from the engine varies with engine speed
How stopping distance depends on driving speed, pavement slipperiness,

How the sun moves from east to west every day

the ignition switch is on

and brake pressure

How headlights improve visibility when the sun is down
How windshield wipers improve visibility when it's raining
How performance varies with gear selection and driving speed
How instrument panel gauges don't always read accurately
(in my car anyway)
How the instrument pane
bang on the dashboard

gauges sometimes work more rehab y when you

6/27/02 23

Mission Data System

Now,
Imagine Software Driving Your Car

What would the software have to know?
What would it have to do?

e It would have to know ...
AH the states described before - and more
All the models described before - and more

* It would have to ...
Set objectives regarding the state of the world
Monitor the state of the world
Form a coherent notion of the state of the world
and anticipate its changes
Adjust its intended actions to achieve a new world state
that meets its needs
Control the state of the car, which is part of the world

6/27/02 24

That Is ...
Mission Data System

Software must know and do the same things you do

Software needs models
These are the same models sysfems engineers use

Consis ten t use
of a common notion of state

is essential

6/27/02 25

What's New?

System Engineers have always analyzed systems
in terms of their state

Software Engineers have always represented system
state in software

However

6/27/02 27

.
Different Languages,

Different Methods

Systems Software
n

There has generally been little uniformity
within these areas, let alone between them

6/27/02 28

One Language,
One Method

Systems and Software

A common language enables a simpler, uniform,
shared organization of the effort in both areas

6/27/02 29

.

What’s Needed?

Mission Data System

More than just talkabout state and models

An concrete, organizing framework

One method for accomplishing this is called ...

6/27/02 30

Mission Data System

State Analysis:

A uniform, methodical, and rigorous approach to. m .

Discovering, characterizing, representing, and documenting the states

Modeling the behavior of states and relationships among them
Capturing the mission objectives in detailed scenarios

Keeping track of system constraints and operating rules

Describing the methods by which objectives will be achieved
Recording information about hardware interfaces and operation

of a system

For each of these design aspects, there is a simple but
strict structure within it is defined
This structure is comprised of

Common Framework Elements

6/27/02 32

Common Framework Elements

Goals

Est i ma tors

Time
Measurements

State Constraints
Scenario Fragments

Various Models
Resources

Con t ro I le rs
Commands

Time Constraints
State Variables

Allocations

6/27/02

D D H and a few more
33

L

Q
2

>r
t

a,
II:
-c

.,
Y

-
O

a,
0

a,
Q

._

.
m cn
._.
n

0

cn
0

3

.- CI

n

P
 I

x

0

uo os pue -.*

e

e

e

A
 L

U

0

3 E c1s
L.

;7' .r
,

85 P
u)
E

'j,

E L 3 u,
i!

8
8

Q
)

ctz
+
.r

ti
ctz
ti

e
*

3

cn
m g!

E E 2 3 g!

5
 0

a,
v
)

a,

v
)
a,
0

U

m c
,

c
,

z

e
-

a,
> a,
-
-

mi
0

c

a,
s

0

c
,

S

3

v
)

v
)

.- g!
a
,
:

z
.

f

Spacecraft States

e

0

0

0

a

0

e

0

Dynamics

Environment

Device status

Parameters

Resources

Data product collections

DM/DT Policies

External I y controlled factors

Vehicle position & attitude, gimbal angles, wheel rotation, . . .

0 Ephemeris, light level, atmospheric profiles, terrain, . . .

Configuration, temperature, operating modes, failure modes, . . .

Mass properties, scale factors, biases, alignments, noise levels, . . .

Power & energy, propellant, data storage, bandwidth, ...

Science data, measurement sets, ...

Compression/deletion, transport priority, . . .

Space link schedule & configuration, ...
... and so on

6/27/02 37

Spacecraft Models

Relationships among states

Relationships between measurement values and states

Relationships between command values and states

Sequential state machines

Dynamical state models

Inference rules

Conditional behaviors

Compatibility rules

Power varies with solar incidence angle, temperature, & occultation

Temperature data depends on temperature, but also on calibration parameters and
transducer health

It can take up to halfa second from commanding a switch to full on

Some sequences of valve operations are okay; others are not

Accelerating to a turn rate takes time

if there has been no communication from fhe ground
in a week, assume something in the uplink has failed

Pointing perhormance can't be maintained until rates are low

Reaction wheel momentum cannot be dumped while being used for control
... and so on

6/27/02 38

Mission Data Svstem a

Resulting Software Elements

Each State and Model is represented directly
in code

In addition, there is a direct mapping between
requirements and implementation of

Algorithms
Data structures
Scenario elements

... and so on

6/27/02 39

Mission Data System

Advantages on Many Fronts

Captures thorough, unambiguous requirements

Guides a clear work breakdown

0 Aids collection of metrics

Fosters a robust design approach
Aids cross-checking for coverage and consistency

Serves as an integration tool at many levels
* Improves inspectability and testability

Enables principled coordination of the system

Assures greater reusability

Facilitates increasing autonomy

6/27/02 40

State Analysis was created and refined by MDS as
part of a joint Systems and Software engineeri
effort at JPL

MDS is comprised of
Processes (such as State Analysis)
Tools (such as a State Analysis data
Architecture (state-based, to

State Analysis products)
Framework (a large, extensible body of

reusable core software)

6/27/02 42

Trial Applications, So Far

A few interplanetary "cruise" scenarios
0 Entry, descent, and landing"

A surface rover*

Results so far

* MDS is slated
on the Mars S

* In development
6/27/02 43

