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Abstract 

Doppler data generated with the Cassini spacecraft’s radio carrier waves at X and 
Ka band can be used to determine the quadrupole moments of Rhea’s gravitational 
field. The resulting tri-axial field should be consistent with the assumption that 
Rhea is in tidal and rotational equilibrium. If so, we can construct interior models 
that are consistent with Rhea’s mean density of 1236 kg/m3, determined previously 
from Pioneer and Voyager data, and its axial moment of inertia, to be determined 
from Cassini’s gravity data. Two-zone models consisting of a rocky core overlaid by 
a deep layer of ice are explored in some detail. While three-zone models consisting 
of an iron core, or a eutectic mixture of iron and iron sulfide, plus a rocky mantle 
and an outer layer of ice are possible, Rhea’s relatively small density suggests that 
the satellite is not iron rich. Finally, we show that a flyby at the planned altitude 
of 500 km provides sufficient accuracy for the gravity experiment. 
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ence in the equatorial moments of inertia by 
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where the ellipsoidal satellite’s principal moments of inertia are A, B, and C 
(C>B>A). The satellite’s total mass is M and its mean radius is R. For a body 
in rotational and tidal equilibrium’, the gravity coefficient C 2 2  is related to 
the rotational response parameter q, by 

1 
c 2 2  = -kfQ 4 ( 3 )  

where kf depends on the distribution of mass within the satellite (kf = 3/2 
for constant density). The other principal quadrupole gravity coefficient 5 2  is 
just 10/3 of C 2 2  for a synchronously rotating satellite. 

Given C 2 2  or J 2 ,  and q,, we can determine kf from Eqn. ( 3 ) ,  and the satellite’s 
axial moment of inertia C follows from the Radau relationship (5) 

3 Rhea Interior Models 

Consistent with the constraint provided by the single density datum p, we 
assume a simple two-layer model for Rhea consisting of a core of radius re and 
density pc surrounded by a mantle of density pm. The mean density ,ij for this 
two-layer model is 

Even for this simple model, there is only one equation in three unknowns. 
Therefore, assume that Rhea’s core is made up of material similar to Io’s 
mantle with a density pc of 3250 kg/m3 (6) and an icy shell of density 1000 
kg/m3. Eq. 5 yields a fractional core radius rc/R = 0.472. This is certainly a 
reasonable model, even though the assumption on core density is questionable. 

This assumption of equilibrium means that the potential of degree two is deter- 
mined by the body’s response to the rotational and tidal stresses. 
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where, as illustrated in Fig. 4, b is the spacecraft's distance from the body's 
baricenter, u is its velocity (all quantities refer to the closest approach time 
t = 0), ! and m are the direction cosines for the Earth-spacecraft direction pro- 
jected, respectively, along the radius and velocity vectors at closest approach, 
and r ( t )  = d m  is the modulus of the (unperturbed) radius vector (7). 

In order to construct the covariance matrix we need the partial derivatives of 
the observable q with respect to the parameters, in our case: 

da mb !ut 

In general, the partial derivatives form the row matrix - A(t), from which the 
information matrix is derived as 

t o  

where [ t o ,  t o  + T ]  is the observation interval. Finally, the covariance matrix is 
given by 

where oq is the expected range rate error; at X-band, we adopt oq = 0.015 
mm/sec at 60 seconds integration time, which corresponds to a 2-way Doppler 
frequency shift of Av/v = 2.4 x (see section 5). The integral in eq. (10) 
is approximated with a discrete sum, with a sampling time of At = 60 sec. 
Note that eq. (11) gives a conservative estimate of the error, since we are not 
dividing by the number of data points N as if all the data errors were random. 
Instead, we are including the worst possible systematic errors, which heuris- 
tically provides a realistic estimation for the error for orbit determination 
problems. 

We can now insert the flyby conditions for Rhea. In our notations these are: 

b = 1264 km (12) 
u = 7.27 km/sec (13) 
e= 0.14 (14) 

m = -0.95 (15) 
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coefficients, along with other parameters in the fitting model, are determined 
from the Cassini radio Doppler data by weighted least squares (9; 10; 11; 12). 

Next, we examine the Rhea targeted flyby in the Cassini tour of the solar 
system. This flyby occurs on November 26, 2005. 

Figure 8 shows the effects of the quadrupole moments of Rhea’s gravity field 
on the hyperbolic orbital elements of the spacecraft over an interval of time of 
one hour around closest approach. The definition of the classical hyperbolic 
elements follows. Consider the “orbit reference frame” whose (i) origin coin- 
cides with the hyperbola’s focus; (ii) x-axis direction is that  of the hyperbola’s 
vertix; and (iii) z-axis direction is normal to the plane of the hyperbola. The 
semi-major axis (a < 0) and eccentricity (e > 1) define the shape of the orbit 
in this reference frame in terms of the cylindrical coordinates T (radius) and 
f (true anomaly) by 

a(1  - e2) 
1 + e c o s f ’  

r =  

Furthermore, the longitude of the node R, inclination I ,  and argument of 
periapsis w are the Euler angles orienting the orbit reference frame with respect 
to a body-fixed reference frame. 

In Fig. 8, the signal can be seen clearly over a duration of f 6 minutes or - 1t2b/v seconds around closest approach. This short duration indicates that 
closest approach tracking data are very important to determine Rhea’s low 
order and degree gravity field. In order to quantify the capability of the Cassini 
experiment, we performed numerical covariance analyses. 

An important input parameter to such analyses is the Allan deviation. Our Al- 
lan deviation budget benefits from published X-band noise statistics (13). The 
major noise contributors are the Earth’ s troposphere, the charged particles 
in the interplanetary plasma and the Earth’s ionosphere, and ground antenna 
mechanical vibrations; the contributions of the ground and spacecraft elec- 
tronics to the noise can be neglected; the spacecraft attitude is maintained by 
the reaction wheels, so that translational accelerations associated with atti- 
tude control are not of concern. Let us consider an integration time of 1000 
seconds. 

The one-way Allan deviation associated with the uncalibrated tropospheric 
noise is typically - if the weather is good but can be six times worse 
in bad weather. We adopt these two limits for the expected and worst cases, 
respectively. 

Around closest approach, an uplink X-band radio signal will be transmitted 
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similar behavior. This suggests that high correlations can be expected. We 
decreased the correlations between (p or v) and b by tracking the spacecraft 
not only around closest approach (from -2 hours to + 2 hours) but also on 
the “wings” of the flyby, from -8 hours to -6 hours, and from +6 hours to 
t 8  hours. 

The addition of data on the wings also improved the orbit determination. 
Indeed, it decreased the uncertainties of all variables except for C ~ O  and de- 
creased all the correlations, except those involving C20. This is not surprising 
in view of the fact that the flyby is nearly equatorial (the spacecraft orbital 
inclination with respect to Rhea is N 10 degrees). For this reason, we removed 
C20 from the set of variables to determine, fixing its value to -10/3 the value 
of C22, as predicted by the equilibrium theory. Thus we determined nine vari- 
ables consisting of the above-mentioned set of XI, minus C20. 

The major results of this analysis (nominal case) are: (1) 1-1. is determined with 
an absolute accuracy of 3.6 x lop5 ,  which is less optimistic by a factor four 
than found in section 4; (2) C2, is determined with an absolute accuracy of 
1 . 8 ~  (3) The magnitude of Ais  very well determined; this was verified by 
comparing the nominal case with one in which this variable is not determined; 
this confirms the capability of our scheme to account for constant unmodeled 
forces and systematic errors. 

A reduced tracking coverage removing f 12 minutes around closest approach 
from the above-mentioned nominal coverage was also considered. This option, 
if compatible with the scientific goal of the Rhea gravity science experiment, 
would have had the merit of releasing observation time for any of the other 
eleven groups of instruments onboard the Cassini orbiter. Indeed, the Cassini 
tour of the Saturnian system has only one targeted flyby of Rhea. Thus, this 
option was considered because of the potential increase in science return that 
it might offer. However, we found that the accuracy of CZ2 determination was 
degraded to 50 x demonstrating that this option is incompatible with 
our scientific goal. 

6 Conclusions 

1) The Cassini Rhea gravity science experiment is expected to determine C2, 
with an accuracy of - 2 x lop6,  providing a very good experiment. This in 
turn will allow us to determine the size and density of Rhea’s core to  within 
16 % in all plausible cases (see Fig. 3). 

2) In the best case, CZ2 would be determined with an accuracy of 1 x l ov6 ,  
providing an excellent experiment. 
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Fig. 1. Rhea’s core density as a function of (322. The dashed lines represent Rhea’s 
mean density, the density of Io’s mantle as determined from Galileo gravity data, 
and the density of a eutectic mixture of iron and iron sulfide. The shaded region 
illustrates how a measurement error of +/ - 2.4 x low6 is the reflected in the density 
uncertainty. 
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Fig. 3. Fractional error in Rhea’s core density as a function of core density for an 
assumed error of in the gravity coefficient (222. The dashed lines have the same 
meaning as in Fig. 1. 
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Fig. 5. Linear combination of q partial derivatives with respect to p and b for Rhea 
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Fig. 7. Predicted correlation coefficient between p and b for Rhea flyby. 
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Fig. 9. Doppler observables and partial derivatives of the Doppler observables with 
respect to the ten fit variables defined in the text. On the vertical scale, the unit is 
km/s. 
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