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Today’s Space Power Converter Technology o —

‘Typical rad-hard %
dc-dc converter
38 cm3
80g

-magnetic components required for energy storage, filtering and isolation
-still difficult to miniaturize and integrate power magnetics
-power electronics remain a mass/volume burden for spacecraft avionics
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Spacecraft power electronics considerations o —

JPL/NASA Philosophy--Need design flexibility

-would rather develop one small (e.g., 10 W) converter

-parallel smaller converters for 20, 30, 100 W (using modular slices)
-avoid designing a 100 W converter that is never used again

-looking for methods of high density packaging to cut down on passives
-combine passives/switching/control
-move to distributed power

-no longer wind our own magnetics

-batch fabrication would be great
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-are integrated magnetics the answer?
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Discrete vs. integrated inductors

Discrete, surface mount inductors
Heavy gauge copper wire wound around
a ferrite based core

Integrated inductors
Spiral metal trace on silicon

High inductance but Low mass and volume but
high mass and volume low inductance
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Inductor Resistance

_ 2n Energy Stored  fL
Energy Dissipated R

Q-factor

f, GHz \

* Increasing N means increasing R, thereby decreasing Q and SRF

 Could operate at a higher (>500 MHz) frequency, but not optimal for power

* Enhance L by adding magnetic materials; keep R low by using thick Cu lines
 Important to have Q peak in key power region of 1-10 MHz
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ﬂ Microinductor challenges  — N

e Small volume of core
t= film thickness, effective cross section area of core limited
ue t is critical parameter (permeance)

» Frequency response
-reduce losses at 1-10 MHz (smaller size, but less efficient)
-need new “power materials” that can be readily integrated
-don’t have access to hundreds of core materials and shapes

» Packaging/Integration
-minimize footprint
-thermal management (can be benefit)
-performance (parasitics, sensitivity to environment)

* Need the proper combination of:
-inductance
-resistance
-area
-Q (1-10 MHz)
-current handling
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u “Micro-fabricated” inductors - — N

-Earliest investigations in the 1970’s (sputtered/evaporated alloys as the “core”)

-Honeywell investigated electroplated inductors in the early 1980’s
-Lucent and others investigated in the 1990’s
-More recently various academic groups (Japan, Europe, U.S.)

-Still no real application of a microinductor for power
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M Need the right balance of (conflicting) characteristics  _JI={_

* Inductance (favored by more turns, which increases R)

* Resistance (favored by less turns, which decreases L)

» Size (very restricted)

* Low loss and high Q (difficult between 1-10 MHz)

* Frequency of operation (sufficient Q difficult)

* Current handling and power (less volume, easy saturation)

» Ease of fabrication (annealing? magnetic fields? materials costs? laminations?)
size

efficiency frequency
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u Candidate Magnetic Materials - N

Ferrites

» classic high frequency material

* low saturation magnetization

» difficult to deposit, require high temp. processing

Ferromagnetic metals

* well suited for thin film deposition

* high permeability leads to enhanced inductance
* low resistivity limits high frequency application

Spinel Ferrite structure

Material Brax, |M He, |p, Deposition
G Oe uQ-cm |Methods
Ferrites sputtering,
5,000 |1000 |1 10’ stencil printing
Ferromagnetic sputtering,
metals 24,000 [3500 |<0.05|10° electroplating
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Microfabricated “Micro-inductors” -H-

Permalloy

SU-8 Dielectric

@ Cu spiral

PPI Dielectric

Permalloy

glass substrate

electroplated, using SJR 5740 photoresist

Polyimide:

applied with multiple spin coats
plated, using SJR 5740 photoresist

photo-imaged, PPI
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Permalloy vibrating sample magnetometer data - N

Electroplated NiFe using standard Permalloy Bath
composition ~ 80% Ni 20% Fe
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Cross-sectional SEM of a typical microinductor -

Permalloy

-

- SU-8 resist

<— Copper Coils

‘§Polyimide Dielectric

» Permalloy
u2a_-13

-----------

P8 Vo2 106.080kV X800 37.5prm

-resembles “pot core” geometry in which windings are buried in magnetics

-should be better for shielding of EMI
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JPL Batch Fabrication of Microinductors
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Close-up of microinductors

Example test structure on glass:
N = 30 turns

Area = 13 mm?(round)

Line width = 58 um line widths
Line spacings = 6 um

Copper thickness =11.4 um

Lower Permalloy thickness = 2.3 um

- . _ N ) 3 "fi
1 190.0kV X38.0 1.2@8mm

Upper Permalloy thickness = 3.5 um

Top view of microinductor
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u Enhancement over air core values . —

L =3.2 uH at 1 MHz
R =16.3 Qat1 MHz (DCR = 5.1 Q)
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u:_ Q peaks in the critical power region .R

Peaks around 1 MHz (Q=1.3)
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Current response u — N

6
i . ® 100 kHz _
L4 A 500 kHz
T+ )" 800 kHz T
T heeer,’ =1 MH
§3__-—.l_:___’_‘_ ° 5 z
T L A )
‘6 ‘ 4 A ® o Py
3 2 8 i 8 .—‘—‘—‘—z—i——*—n‘ :
£
]
0 . :

. 40 60 80 100
Bias Current( mA)

Inductance vs. bias current with 7.5 mA RMS alternating current at
100 kHz, 500 kHz, 800 kHz, and 1 MHz
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Current response u — N
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Inductance vs. bias current with 7.5 mA RMS alternating current at
100 kHz, 500 kHz, 800 kHz, and 1 MHz
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University of Cincinnati-Toroidal Approach  —

Magnetic
Core

C ' RN Copper Coil
UNIVERSITY OF E DN

Cincinnati . LLibb

-#-No gap -#-40gap —+100 gap
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%

Inductance (uH)
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Courtesy: Prof. Chong Ahn (UC)
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n Improving Microinductor Performance - N

Frequency response
-add laminations (costly and more processing)
-new materials (ternary and quaternary alloys, ferrites)
-control anisotropy (how much does this help?)

Current
-gaps (difficult to model)
-new materials (Co alloys)

DC resistance
-thicker copper (at the sacrifice of higher ac resistance?)
-larger area (sacrifice miniaturization)
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Inflatable and Deployable Structures - N

Active membrane synthetic aperture radar (SAR) antennas including flex-compatible T/R
modules (for mapping, surface monitoring and change detection of Earth)

Courtesy: Dr. Alina Moussessian (JPL)

T/R module
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Current passvive inflatable membrane antenna
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Ferrite polymer composite thick films - — N

1000 2000

IIUV

6-10 um particles + resin H, Applied DC Field, Oe

SEM of stencil printed
Ferrite-polymer composite film

Magnetization curve for printed magnetic film

-Developing novel stencil printed ferrite-polymer composite films

-Stencil and screen printed inks with solvent + resin + ferrite

-Cured at low temperatures-easy integration with heat sensitive substrates
-Enable thicker films to be deposited

-Provide higher frequency operation and higher current handling

-Lower magnetization due to use of ferrites
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Screen printed inductors

——  ___ upper composite
layer

metal coil

e

lower composite
layer

5mmx 5 mm, 11 turn
coil-on-flex
Mn-Zn composite
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Q peaks between 1-10 MHz, flat inductance - — N
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Data courtesy of Bill Kuhn (KSU)
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Low Temperature Direct Write of Electronic Components _J_
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Multilayer, mH inductor coil drwan by printing bottom silver lines, overcoating ferrite layers, and
Connecting the botton over the ferrites to complete a spiral coil.

pegclem(@sandia.gov

Courtesy: Paul Clem, Sandia National Labs

(505) 845-7544,

http://www.sandia.gov/materials/sciences/factsheets/LoTempWrtElcCom2.html
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M Packaging and integration of a dc-dc converter A

SOl high voltage switch, catch diode
and PWM die

\

capacitor

inductor
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E Multi-layer passive test structure (capacitors, resistors) .PI.

sputtered
Anodized -8 Cr—Si
tantalum oxide ; resistor
capacitors "
¥ 2
| B S .
Gold t - ¥ pin-on
old test pads ] BCR
3 capacitors

Ni-Au metallization
trace for flip-chip
bonding of daisy
chain test die
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Fabricated by Integral Wave Technologies (Arkansas)
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Integrated passives modules  —

Fabricated by Integral Wave Technologies, Flip Chip at Auburn University
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Power switching circuit with integrated passives  —

A
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Integrated Magnetic Components for Distributed Power
Electronics

* Integration of passive components can play a key
role in the miniaturization of spacecraft avionics

* Reducing the mass and volume of spacecraft
power electronics will require advances in integrated
passives, particularly magnetic components

» Significant challenges remain, including choosing
proper materials, as well as addressing design,
layout and test and re-work issues
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