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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK
Motivation #1: The Deep Space
Network’s Aging Assets
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(Graph compliments of R. C. Hastrup and R. J. Cesarone, JPL)
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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK
Motivation #2: The Changing Robotic
Space Exploration Paradigm
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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK

Methodol ogy

Reviewed NASA strategic plans, roadmaps, and related NRC documents.
« Interviewed future user community representatives.

¢ Constructed extensive database on future missions and their telecommunication-
related needs.

¢ Used database in analysis of future mission demographics.
+ Conducted “quasi-Monte Carlo” analysis to account for future mission set uncertainties.
+ ldentified time horizon applicability limits.

« Employed analogies to Earth-based capabilities to extrapolate trends beyond
demographic time horizon applicability limits.

¢ |dentified key drivers on long-haul communications to and from Earth.

¢ Held a “Science & Future Mission Workshop” where preliminary results of these
efforts were vetted.
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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK

Findings: Downlink Circa ~2010
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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK

'Findings: Downlink Circa ~2010

| (Contnued ..)
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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK

Downlink: Looking

+ Problem: Mission concepts more than 10 years out exhibit a heavy bias towards
today’s technologies.

« What We Know: Scientists want to be able to carry out science investigations at other
planets with same ease, precision, and resolution as they can on Earth.

+ Solution: Use current Earth-based capabilities as an indication of what will be needed
for future deep-space capabilities.

* Case in point: Remote Sensing from Space

Earth Remote Sensing:

B&W Photos Multi-Spectral Synthetic Aperture Radar
1958 » 2002+

Color Photos Hyper-Spectral Ultra-Spectral

Remote Sensing at Other Planets:

B&W Photos Multi-Spectral Synthetic Aperture Radar

1958 - > 2002+
Color Photos Hyper-Spectral

D. S. Abraham Space Ops 2002 Page-8



IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK

Downlink: Looking Beyond 2010
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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK
2.7 AU Mars Orbiter/Relay Scenario (~2012)
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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK

10.6 AU Titan Orbiter/Relay Scenario (~2012)

(Maximum Supportable Rates with RF Flight Hardware Improvements
and Ka Ground Improvements)
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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK

Findings: Uplink Circa ~2010
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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK

Uplink: Looking Beyond 2010

s In situ exploration will directly entail or depend heavily upon mobility elements.

+ Intelligent use of mobility requires guidance, navigation, & control (GN&C).

+ Mobility elements will have to negotiate obstacles faster than command from Earth will allow.

s Earth-based analogs suggest potential solutions that depend on onboard autonomy, in
conjunction with remote sensing data product uploads, for navigation & retargeting.

D. S. Abraham
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IDENTIFYING FUTURE MISSION DRIVERS ON THE DEEP SPACE NETWORK
The Changing Operations Paradigm and °
Future Questions |

The Changing Operations Paradigm:

(1) More onboard autonomy, less low-level commanding.
(2) In situ exploration elements as consumers of orbital remote sensing data.

andmark
Relative Recognition
Motion
Estimation

Orbital Remote Large Downlink Production of GN&C and Large Software
Sensing Data Volumes Science Targeting Data Uploads on
Products Uplink

Future Questions:

(1) What is the anticipated size of the uploads as a function of time?
(2) What is the anticipated frequency of these uploads?
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