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JPL Introduction @

HITRAN is an indispensable resource for anyone
doing remote sensing

HOWEVER

it’s not (yet) perfect!
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Priority One
WATER VAPOR CONTINUUM

The largest single source of systematic error in atmospheric
retrievals remains the water vapor continuum.

Not a HITRAN issue?

It ought to be.
m
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Self-broadened WV Continuum improved

substantially from ARM observations
*Combined Sensor Cruise Case Study (near Nauru, 18 March 1996)
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JPL Priority One (cont)

Continuum measurements are difficult and their
interpretation uncertain. All the more reason to do them.

We need an improved version of CKD 2.4. The planned CKD
3.0 was never released.

We also need a much better understanding of the physics of
the continuum. A complete quantitative formulation for the
continuum (including temperature and mixing ratio effects)
requires a sound theoretical basis which we currently lack.

S —
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JPL Priority Two

NITRIC ACID

Nitric Acid around 880 cm! appears to sit on a continuum.

o

In any case, fitting atmospheric spectra in this region is a
difficuity of long standing, not helped by the band(s) being
bracketed by CFC11 & CFC12.

Is this a solved probiem?

* - .
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JPL Priority Three ',
CARBON DIOXIDE

The issue here is line mixing/coupling in the Q-branches
(especially in the 650 — 850 cm! region).

The region is critical, because that is where much of our
information about the lower atmosphere temperature profile

is obtained. Without a good temperature profile, all species
retrievals are compromised.
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Priority Three (cont) @

The situation is improving, but we still see systematic
residuals in atmospheric retrievals.

Please put a lot of effort into providing better coupling
coefficients.
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JPL Priority Four ‘-
CARBON MONOXIDE

Just when you thought it was safe to leave the lab!

Yes, folks, CO in HITRAN is a problem.

WHY?
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JPL Priority Four (cont) @ |

I——

Because biomass burning shows CO emission features from
highly excited rotational and vibrational states.

HITRAN stops with the first excited vibrational state (3-2).

We need to have 4-3 & 5-4 added because there are
unidentified emission features in the spectra that are almost
certainly CO but cannot currently be quantified.

— I——
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JPL Priority Four (cont) -

It is from these CO features that we determine the flame

temperature.
® AES measurements provided values in excess of 1300K.

® The flame temperature is a valuable parameter both for firefighting and for
assessments of the impact of biomass burning on the atmosphere.

Spectroscopy is the way to do this. Radiometers persistently
underestimate fire temperatures due to non-uniform
illumination and partial filling of the field-of-view.

Spectroscopically, one only needs to determine relative
emission strengths. The field-of-view does not enter into the
determination.

12 June 2002 7* Blennial HITRAN Conference 11

JPuL

WILDFIRE MODEL @

The radiative
transfer environment
is extremely
complex, leading to
serious difficulties in

Biomass burning
is an important
target for both
TES and AES

45meters

the spectroscopy.
This is the surface RIS
model used inthe  ERsvichina® Within a single
analysis of two o PR footprint there are

| wildfires in 1994 many different

thermal environments
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JPL BIOMASS BURNING
_ R

Biomass burning provides both an oxidizing and a reducing
environment, generating an astonishing variety of species!

Furthermore, ambient air is entrained into the flames. Some
of it, of course, becomes involved in reaction processes.

For example, N,O and O, are rapidly decomposed by

N,O —»N, + O
03 » 02+0

Whereas H,0, CO, CO, and CH, can survive intact and form
emission lines.

L ﬁ
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AES WILDFIRE SPECTRA b
San Luis Oblspo Brush Fire, August 1994
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JPL AES WILDFIRE SPECTRA

San Luis Obispo Brush Fire, August 1994
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A SUGGESTION @

Merge HITEMP into HITRAN

it would simplify my life!

— R
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Backup 3
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Figure 3. Spectral residuals from modeling of
downwelling radiance for a tropical atmosphere. [Han et
al., 1997).

1e-1
00 350 400 450 500 550 600
Temperature, K
e——— -]
12 June 2002 7 Biennial HITRAN Conference 21
10 e s

;
g
g 1-
0

11



AERVLBLRTM QME : Implications for
refining the Water Vapor Self Continuum
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Foreign Continuum  Modifications: U. Wisc HIS/AERI
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