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Earth-Mars cycler trajectories (cyclers) repeatedly encounter Earth and Mars. A 
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Nomenclat w e  
orbit period, years 
position vector, AU 
aphelion radius, AU 
perihelion radius, AU 
Earth-Mars synodic period, years 
time to repeat the cycler trajectory, 
years 
hyperbolic excess speed, km/s 
semi-major axis, AU 
eccentricity 
number of Earth-Mars synodic periods 
before repeating 
parameter of the cycler orbit, AU 
number of complete revs before 
repeating 
number of complete revs on first leg 
number of complete revs on second leg 
angle between initial Earth position and 
Earth’s position after n synodic periods 
clockwise angle from Earth to Mars, rad 
time from beginning of repeat interval 
to intermediate Earth flyby, years 
argument of periapsis, rad 
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Introduction 
N the 1960’s, the utility of gravity-assist maneu- I vers was finally understood, and missions using 

multiple gravity assist flybys were shown to be pos- 
sible.’I2 In the late 1960’s, Hollister3i4 and Hollister 
and Menning5i showed that ballistic trajectories ex- 
ist which repeatedly encounter Venus and Earth. 

Trajectories that repeatedly encounter the same 
planets on a regular schedule without stopping are 
now known as cycler trajectories, or cyclers. We 
distinguish cyclers that require large propellant ex- 
penditures from those that don’t by referring to the 
former as powered cyclers and the latter as ballistic 
cyclers. 

It seems that Ral17 and Rall and Hollister’ were 
the first to show that there exist cycler trajectories 
between Earth and Mars. Their method of finding 
Earth-Mars cyclers was essentially heuristic, so they 
wrote, “Because of the cut-and-try nature of the 
method, one cannot be certain that all periodic [cy- 
cler] orbits have been found-ven among the types 
of periodic orbits considered.”’ The cyclers they did 
find repeat every four synodic periods or more. 

In 1985, Aldrin suggested that an Earth-Mars cy- 
cler may exist which repeats every synodic p e r i ~ d . ~  
This was subsequently confirmed by Byrnes et al.1° 
Also in 1985, Niehoff first proposed the VISIT 1 and 
VISIT 2 Earth-Mars ~yclers.ll-’~ These cyclers were 
investigated further and compared to the Aldrin cy- 
cler by Fkiedlander et al.14 

A natural question that arises is whether or not 
there are any other Earth-Mars cycler trajectories. 
In this paper, we describe a method of constructing 
such trajectories. This method might be described 
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as “patching consecutive collision orbits”. 
Assuming conic orbits, several researchers have 

investigated the families of trajectories that leave 
Earth (or any other orbiting body) and return at a 
later Such trajectories are known as con- 
secutive collision orbits. Howell and Marsh provide 
an excellent historical overview in Ref. 22. 

If only the Earth is used for gravity-assist ma- 
neuvers, then Earth-Mars cycler trajectories can be 
constructed by patching consecutive collision orbits 
together at the Earth encounters so that the entire 
trajectory repeats after an integer number of Earth- 
Mars synodic periods. We elaborate on this method 
of constructing Earth-Mars cyclers. 

Interestingly, PoincarC knew about periodic so- 
lutions of this sort (i.e. consecutive collision orbits 
patched together at planetary encounters) .23 Such 
orbits are known as PoincarB’s ‘‘second species” pe- 
riodic orbits and have been studied quite exten- 
~ i v e l y . ~ “ ~ ~  However, as far as we know, PoincarC’s 
second species periodic orbits have not previously 
been considered as potential Earth-Mars cycler tra- 
jectories. 

Methodology 
In order to construct Earth-Mars cycler trajecto- 

ries, we begin by making a number of simplifying 
assumptions: 

1. The Earth-Mars synodic period S is 2$  years. 

2. Earth’s orbit, Mars’ orbit, and the cycler tra- 
jectory lie in the ecliptic plane. 

3. Earth and Mars have circular orbits. 

Fig. 1 Example initial configuration. 

Now we must determine what conditions must be 
met if the .spacecraft orbit is to be a cycler tra- 
jectory. At the initial time, t o  = 0, the clockwise 
angle 40 from Earth to Mars is chosen so that the 
spacecraft will encounter Mars after leaving Earth. 
Following the Mars encounter, the spacecraft may 
encounter Earth again. If an Earth encounter hap- 
pens when the Earth-Mars angle 4 = 40 again, then 
the spacecraft could return to Mars using the same 
(shape) Earth-Mars transfer orbit that it used ini- 
tially. Moreover, the trajectory could be repeated 
indefinitely and hence it is a cycler trajectory. 

Let T be the time to repeat a cycler trajectory. 
Then the above discussion implies that 4(T) = 
4(0) = 40. Since $(t)  (the clockwise angle from 
Earth to Mars) only repeats once per synodic period, 
T must be an integer number of synodic periods: 

T = n S = n .  (2 ; )  wheren=1,2,  ... (1) 

4. The cycler trajectory is conic and P r o S d e  (di- Since the angular velocity of the Earth is 2w ra- 
dians per year, we also know that R E ~ ? ~ ~ ( T )  = 
(cos(T), sin(T)). Therefore the conditions for the 
spacecraft orbit R(t) to be a cycler trajectory are: 

rect) . 
5. Only the Earth has sufficient mass to provide 

gravity-assist maneuvers. 

6 .  Gravity-assist maneuvers occur instanta- R(O) = (1,O) (2) 

neously. R(nS) = (cos(nS), sin(nS)) (3) 

We note that assumption 1 is equivalent to as- 
suming that the orbital period of Mars is 1; years 
(whereas a more accurate value is 1.881 years). 

Assumptions 2 and 3 allow us to set up a pla- 
nar coordinate system with the Sun at the origin 
and the Earth on the positive x-axis at the launch 
date. (After we find a cycler trajectory, we choose 
the launch date so that the spacecraft encounters 
Mars.) An initial Earth-Mars configuration is illus- 
trated in Fig. 1. 

where n = 1,2 , .  ... This is a Lambert problem. 
Given n, we want to find a solution R(t) to the 
two-body problem that connects R1 = (1,O) to 
R2 = (cos(nS), sin(&)) in a time of flight T = nS. 

For example, let us consider the case n = 1 which 
means we are looking for cycler trajectories that re- 
peat every T = nS = 2f years. In 2f years, the 
Earth orbits the Sun 2f times, so when the space- 
craft returns to Earth after 23 years, the Earth will 
be $ of a rev (51.43’) ahead of where it was when 
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the spacecraft left. (This will also be true when 
n = 8,15,.  . ..) The geometry of this Lambert prob- 
lem is illustrated in Fig. 2. 

Fig. 2 Departure/arrival geometry when 
n = l , 8 , 1 5  ,.... 

The n = 1 case has multiple solutions (i.e. there 
are many different trajectories that connect R1 to 
R2 in 2$ years). These solutions can be illustrated 
by a plot that shows the orbital periods of solutions 
with various times of flight (see Fig. 3). The solu- 
tions to the n = 1 case correspond to those solutions 
with a time of flight of 2$ years (2.143 years). In 
Fig. 3, we see that there are seven solutions, corre- 
sponding to the seven points on the solution curves 
with a time of flight of 2.143 years. In fact, one of the 
solutions is the Aldrin cycler, which has an orbital 
period of 2.02 years. 

1.5 2 2.5 3 O 0:5 0:6 0:70:80:9 i 
Period of Solution Trajectory (years) 

Fig. 3 
every synodic period (n = 1). 

The seven cycler trajectories that repeat 

Categorizing Cycler Trajectories 
As seen in the above example, there can be multi- 

ple solutions for a given choice of n (the time-to- 
repeat in synodic periods). For each n, there is 
one solution which makes less than one revolution. 

There are two solutions that make between one and 
two revs, two solutions that make between two and 
three revs, and so on. Once the number of revs is 
large enough, there are no solutions because the time 
of flight is not long enough to accommodate all of the 
revs. When there are two solutions for a given num- 
ber of revs, they are referred to as the short-period 
and long-period solutions. Every solution can be 
uniquely identified by specifying: 

1. n, the time-to-repeat in synodic periods. 
n = l , 2 , 3  ,.... 

2. T ,  the integer number of revs. 
T = 0 ,1 ,2 , .  . . ,~,,,(n). 

3. Whether the solution is long-period, short- 
period, or unique-period (Le. when r = 0). 

We denote a solution by a three-element expression 
of the form nPr, where P is either ‘L’, ‘S’, or ‘U’ 
depending on whether the solution is long-period, 
short-period, or unique-period, respectively. For ex- 
ample, the seven solutions in the n = 1 case are 
1U0, 1L1 (the Aldrin cycler), 1S1, 1L2, 1S2, 1L3, 
and 1S3. Tables 1, 2, and 3 show the form of the 
unique-period, long-period, and short-period cyclers 
for n=1-4. It is interesting to note that cyclers 1L2, 
2L4, 3L6, and 4S8 are all equivalent to Earth’s orbit. 

When n is a multiple of seven, R1 = Rz (i.e. a 
resonant transfer), so the Lambert problem becomes 
degenerate. In these cases, the nPr notation must 
be extended to accommodate the larger variety of 
solutions. We discuss this extension later. 

Table 1 Unique-period solutions (nU0) 
~ 

n=l n=2 n=3 n=4 

Evaluating Solutions 
Not all cycler trajectories are practical in applica- 

tions. In this section we describe some criteria for 
evaluating their usefulness in potential missions. 
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Table 2 Long-period solutions (nLr) 

n=l n=2 n=3 n=4 

r = l  

r = 2  

r = 3  

r = 4  

r = 5  

r = 6  

r = 7  

r = 8  
r = 9  

@ 
@ 

N.Sb  

N.S. 

N.S. 

N.S. 

N.S. 
N.S. 

N.S. 

N.S. N.S. 

N.S. N.S. 
N.S. N.S. N.S. 

a Aldrin cycler. 
No solution. 

Number of Cycler Vehicles Required 
When n = 1 and the cycler trajectory crosses 

Mars’ orbit, it crosses Mars’ orbit at two points. By 
launching the cycler spacecraft at the correct time, 
it will encounter Mars at the first Mars-orbit cross- 
ing. This minimizes the time of flight from Earth to 
Mars. A cycler trajectory used in this way is called 
an ‘outbound cycler’ because it is used to travel from 
Earth out to Mars. 

Similarly, the cycler spacecraft can be launched 

Table 3 Short-period solutions (nSr) 

n=l n=2 n=3 n=4 

r = l  

r = 2  

r = 3  

r = 4  

r = 5  

r = 6  

r = 7  

r = 8  
r = 9  

N.S.a 

N.S. N.S. 

N.S. N.S. 

N.S. N.S. 

N.S. N.S. 
N.S. N.S. 

N.S. @ 
N.S. N.S. 

a No solution. 

at a different time, to encounter Mars at the last 
Mars-orbit crossing before returning to Earth. This 
minimizes time of flight from Mars to Earth. When 
the cycler trajectory is used in this way it is called 
an ‘inbound cycler’. We note that the difference be- 
tween an inbound cycler and an outbound cycler is 
the launch date, not the shape of the cycler trajec- 
tory. 

If we assume that there is one short Earth-Mars 
trip and one short Mars-Earth trip every synodic 
period, then we can estimate the number of cycler 
spacecraft required as 2n, a number we want to keep 
small. The value 2n is an upper bound on the num- 
ber of vehicles required because sometimes there is 
more than one short-duration Earth-Mars (or Mars- 
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Earth) leg per repeat interval (7'). Th' is occurs, 
for example, with the Rall-Hollister cyclers and the 
VISIT cyclers. 

Aphelion Radius 
In order for a cycler trajectory to be used for 

traveling between Earth and Mars, it should cross 
the orbit of Mars (i.e. the aphelion radius should be 
greater than the orbital radius of Mars). A quick 
glance at Tables 2 and 3 reveals that many cycler 
trajectories don't pass this test. However, if the 
aphelion radius is just slightly below the orbital ra- 
dius of Mars, then the eccentricity of Mars' orbit 
combined with some small AV maneuvers may be 
enough to make up for a shortfall. 

V, at Earth and at Mars 
Since taxi spacecraft must rendezvous with the 

cycler spacecraft as it passes Earth and Mars, we 
want the Earth V, and the Mars V, to be as small 
as possible. This typically rules out trajectories with 
a small number of revs ( r )  per repeat interval. The 
orbit that achieves the lowest possible s u m  of V, 
at Earth and V, at Mars is the Hohmann transfer 
orbit (2.95 km/s at Earth and 2.65 km/s at Mars). 
Unfortunately, the Hohmann orbit is not a cycler 
trajectory. 

Required versus Maximum Possible Turn Angle 
In order for the spacecraft to return to Mars on 

the same-shape orbit it used originally, the orbit's 
line of nodes must be rotated by AQ degrees, where 
AQ is the angle between the initial and final Earth 
positions (R1 and R2): 

AQ = 2 .360" (mod 360") (4) 7 
We note that when n is a multiple of seven, the 

line of nodes does not need to be rotated (AQ = 
0"). This means that all cycler trajectories with n a 
multiple of seven are ballistic cyclers. The VISIT 1 
and VISIT 2 cyclers are examples of n = 7 solutions. 

If the line of nodes must be rotated, an Earth 
gravity-assist may accomplish this without propel- 
lant. This is not always possible, however, since 
the required flyby radius may be too close to the 
Earth's center (e.g. some solutions require subsur- 
face flybys). We assume that Earth flybys are con- 
strained to altitudes greater than or equal to 200 km. 
Turning that can't be accomplished by an Earth 
gravity-assist maneuver must be made up by doing 
AV maneuvers. 

Rotating the line of nodes is equivalent to rotat- 
ing the V, vector at Earth. If the required V, turn 
angle is less than the V, turn angle obtainable with 

a 200 km flyby, then no AV maneuver is required 
(i.e. the cycler is ballistic). Otherwise, a AV ma- 
neuver is required (i.e. the cycler is powered). 

The Most Promising Solutions 
Table 4 lists characteristics of the most promising 

cycler trajectories with 1 5 n 5 6. We note that 
the Aldrin cycler (1L1) is among the most practical, 
despite the fact that the Earth flybys can't provide 
all of the required turning. 

Cycler 2L3 is noteworthy, even though its aphe- 
lion is slightly below the orbit of Mars. It is one of 
the two-synodic-period cyclers analyzed by Byrnes 
et aL31 

Some of the cyclers with n = 6 are also promis- 
ing. The 6S7, 6S8, and 6S9 cyclers have required 
turn angles that are less than the maximum possi- 
ble turn angles. This implies that they are ballistic 
cyclers. They also have low V, at Earth and at 
Mars. Unfortunately, these cyclers would require 
twelve vehicles in order to provide short Mars-Earth 
and Earth-Mars trips every synodic period. 

Table 5 lists some characteristics of the n = 7 cy- 
clers. These cyclers are special because they repeat 
every T = nS = 7 .  (2+) = 15 years (i.e. an inte- 
ger number of years). This means that the Earth is 
at the same point in inertial space at the beginning 
and the end of the repeat interval (T), so the space- 
craft orbit line of nodes doesn't need to be turned. 
Therefore all n = 7 cyclers are ballistic cyclers. The 
VISIT 1 and VISIT 2 cyclers are n = 7 cyclers. 

Many of the n = 7 cyclers encounter Earth and 
Mars more often than once every 15 years (see Ta- 
ble 5). For example, the VISIT l cycler encounters 
Earth every 5 years and Mars every 3.75 years. This 
means that fewer than 14 spacecraft are required to 
ensure frequent short Earth-Mars transfers. 

Also, because of their simple geometry, the orbital 
characteristics of the n = 7 cyclers can be found an- 
alytically. Since each cycler makes T revs during the 
15-year repeat time, the orbit period is 15/r years. 
In fact, an estimate of the period, P ,  of any nPr 
cycler is: 

(5) 
15n 

PW 77- + [n (mod 7)] (Years) 

Since the orbit period of an n = 7 cycler is 
15/r years, the semi-major axis, a,  is: 

213 
a =  (:) (AU) 

The cycler orbit perihelion radius, Rp, isn't 
uniquely determined by T ,  however. If r < 15, 
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Table 4 The most promising cyclers that repeat every 1 to 6 synodic periods 

Cycler Aphelion V, V, Shortest Required Max. possible 
(nPr) radius, at Earth, at Mars, transfer turn angle, turn angle, 

lLla  2.23 6.54 9.75 146 84 72 
2L2 2.33 10.06 11.27 158 134 44 
2L3 1.51b 5.65 3.05' 280d 135 82 
3L4 1.89 11.78 9.68 189 167 35 
3L5 1.45b 7.61 2.97' 274d 167 62 
3s5 1.52b 12.27 5.45' 134d 167 33 
4s5 1.82 11.23 8.89 88 167 38 
4S6 1.53 8.51 4.07 157 167 54 
5s4 2.49 10.62 12.05 75 134 41 
5s5 2.09 9.08 9.87 89 134 50 
5S6 1.79 7.51 7.32 111 135 62 
5s7 1.54 5.86 3.67 1 70 135 79 
5S8 1.34b 4.11 O.7lc 167d 136 103 
6S4 2.81 7.93 12.05 87 83 59 
6S5 2.37 6.94 10.44 97 84 68 
6S6 2.04 5.96 8.69 111 84 78 
6S7 1.78 4.99 6.66 133 85e goe 
6S8 1.57 4.02 3.90 179 85e 104e 
6S9 1.40b 3.04 1.21' 203d 86e 120e 

AU km/s km/s time, days degrees degrees 

a Aldrin cycler. 
Note: the semi-major axis of Mars is 1.52 AU. 
Difference between Mars' speed and s/c aphelion speed. 
Time to transfer from Earth to aphelion. 

e Ballistic cycler: required turn angle is less than maximum possible turn angle. 

Table 5 Cyclers that repeat every seven synodic periods (15 years) 

# Revs every Period Aphelion Years between Years between 

1 15 [11.16, 12.16) 15 15 

3 5 [4.85, 5.85) 5 15 

5 3 [3.16, 4.16) 3 15 

7 2.143 [2.32, 3.32) 15 15 
8 1.875 [2.04, 3.04) 15 1.875 
9 1.667 [1.81, 2.81) 5 15 

11 1.364 [1.46, 2.46) 15 15 

13 1.154 [1.20, 2.20) 15 15 

15 years ( r )  (15/r), years radius," AU Earth encounters Mars encounters 

2 7.5 [6.66, 7.66) 15 7.5 

4 3.75 [3.83, 4.83) 15 3.75 

6 2.5 [2.68, 3.68) 5 7.5 

l o b  1.5 [1.62, 2.62) 3 7.5 

12' 1.25 [1.32, 2.32) 5 3.75 

14 1.071 [1.09, 2.09) 15 7.5 
a Range given corresponds to perihelion range Rp E (0,1] AU. 

VISIT 2 cycler. 
VISIT 1 cycler. 

6 OF 10 
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then the semi-major axis of the cycler orbit is larger 
than the semi-major axis of Earth’s orbit, so all 
Rp E (0,1] AU are possible. If we choose a value 
for Rp, then we can calculate the cycler orbit eccen- 
tricity, e,  using: 

which in turn lets us calculate the cycler aphelion 
radius, R,: 

R, = a ( l  + e )  = 2 .  (15/~-)’ /~ - Rp (AU) (8) 

When n is a multiple of seven, r and Rp determine 
the semi-major axis and eccentricity of the cycler or- 
bit, but they don’t uniquely determine its argument 
of periapsis, w (i.e. the angle from the x-direction to 
the cycler orbit periapsis direction). Since the ra- 
dius of the spacecraft must be 1 AU when crossing 
the x-axis, the argument of periapsis can have two 
possible values, given by: 

w = farccos (p+) (9) 

where p = a ( l  - e’) is the parameter of the cy- 
cler orbit. Therefore, when n is a multiple of seven, 
we denote a cycler using an expression of the form 
n ( R p ) r f ,  where Rp is the perihelion radius in AU 
and the sign indicates whether the argument of pe- 
riapsis is negative or positive. Figures 4-6 illustrate 
the use of this notation for various VISIT 2 cyclers. 

Extending our Method of 
Constructing Cyclers 

So far, we have been assuming that the spacecraft 
remains on the same orbit during each repeat inter- 
val (of length T). An Earth gravity assist occurs 
only at the end of each repeat interval (if at all). 
We now consider dropping this restriction because 
there is no reason why the spacecraft can’t perform 
multiple gravity assists per repeat interval. As long 
as the trajectory returns to Earth after an integer 
number of synodic periods, it is still a cycler. 

Indeed, multiple gravity assists could be very use- 
ful. If one gravity assist can’t adequately turn the 
line of nodes, then more gravity assists might be able 
to. Also, more Earth encounters may imply more 
short Earth-Mars transfers per repeat interval. 

It is clear that there are many possibilities to in- 
vestigate. Here we consider a specific one. Namely, 
we assume that the repeat interval is two synodic pe- 
riods (Le. n = 2) and that there is one extra Earth 
gravity assist during the repeat interval. Let T be 

Mars’ orbit 
n 

// /Earth’sorbit \ \ 

Fig. 4 
the same as 7(1.0)10-). 

The VISIT 2 cycler 7(1.0)10+ (which is 

Fig. 5 The VISIT 2 cyclers 7(0.9)10+ and 
7(0.9)1&. 

Fig. 6 The VISIT 2 cyclers 7(0.5)10+ and 
7(0.5)10-. 

the time from the beginning of the repeat interval to 
the intermediate gravity assist. Let r1 be the num- 
ber of revs on the first leg and T Z  be the number 
of revs on the second leg. This setup is illustrated 
schematically in Fig. 7. 

For now, we ignore the cases where the first or 
second leg lasts an integer number of years (i.e. we 
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rlto (rl+l) r2 to (r2+1) 
revs revs 

1 I )  

t=O t= 7 t=T=2S 
Fig. 7 
intermediate Earth gravity assist at time t = 7. 

Extension of the method to include an 

ignore resonant transfers). Any cycler that meets all 
of the above conditions can be described completely 
by its values of r ,  T I ,  T Z ,  and whether the first and 
second legs are short-period, long-period, or unique- 
period. 

To evaluate these cyclers, we test all possible com- 
binations of these five parameters. Fortunately, we 
don’t need to consider all T E (O,T), since revers- 
ing the order of the first and second legs doesn’t 
change the characteristics of the trajectory. That 
is, a trajectory with first leg of length r has the 
same characteristics as a trajectory with first leg of 
length T - r. Therefore we only need to consider 
7 E (T/2,T) = (2$,4$) years. 

The most promising of these cyclers are listed in 
Table 6 .  They are all ballistic, they all have V, at 
Earth less than 12 km/s, and they all cross Mars’ 
orbit at least once. The third trajectory listed has 
remarkably low V, at Earth and Mars (4.7 km/s 
and 5.0 km/s, respectively). We will refer to it as 
the SlL1-B cycler (where the B stands for ‘ballistic’). 
A plot of the SlL1-B cycler is shown in Fig. 8. We 
note that only its first leg crosses Mars’ orbit, so a 
short (153-day) transfer is only available once every 
two synodic periods. 

Verification of the SlL1-B Cycler 
In order to verify that the SlL1-B cycler can be 

used in the real solar system, we used the the Satel- 
lite Tour Design Program (STOUR)30 to search for 
a trajectory like it. (STOUR is a patched-conic 
propagator that uses an accurate model for the in- 
clinations and eccentricities of the planets.) 

Using STOUR, we found a ballistic cycler with 
characteristics very similar to the theoretical out- 
bound SlL1-B cycler. The only difference is that 
the SlL1-B cycler has a 153-day Earth-Mars leg, 
whereas the cycler that we found has some legs that 
are almost twice as long. Table 7 summarizes some 
of the characteristics of this ballistic cycler. 

Fig. 8 The S1L1-B cycler. 

In an effort to enforce the shorter Earth-Mars legs, 
we used a maneuver and allowed for subsurface fly- 
bys (which can be replaced by maneuvers). Table 8 
lists properties of one such cycler. Optimization of 
this trajectory will be addressed in a future work in 
which the minimum AV will be found to remove the 
subsurface flybys. 

Other Possible Extensions 

onant transfers must also be investigated. 
directions that remain to be pursued include: 

To complete the extension we have described, res- 
Other 

The use of multiple intermediate gravity assists. 

Using Venus, Mars, or other planets for inter- 
mediate gravity assists. 

Repeat times other than two synodic periods 
(when using intermediate gravity assists). 

Other known cyclers (such as the Rall-Hollister 
cyclers7y8 and the cyclers identified by Byrnes et 
al.31) can be constructed within this more gen- 
eral framework. In particular, the use of one- 
year Earth-to-Earth transfers and half-year Earth- 
to-Earth transfers (known as “backilips”) should be 
investigated further. 

An estimate of the total AV required by powered 
cyclers would also be useful for identifymg nearly- 
ballisitic cyclers. 

Conclusions 
We have developed a method for constructing 

Earth-Mars cycler trajectories. Previously known 
cyclers, such as the Aldrin cycler and the VISIT cy- 
clers, can be constructed using this method. 

8 OF 10 
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Table 6 Promising ballistic two-synodic-period cyclers which use an intermediate Earth gravity assist 

P173P27-2~ Time T of Vw at Leg 1 V, at Leg 1 Leg 2 V, at Leg 2 
intermediate Earth, Mars orbit Mars orbit Mars orbit Mars orbit 
Earth flyby, km/s crossing times, crossing, crossing times, crossing, 

years years w s  years km/s 
UOLl 2.754 11.3 0.188, 2.567 14.0 3.449, 3.592 5.4 
L2UO 2.541 8.8 NCb NC 2.781, 4.046 10.3 
SlLl 2.828 4.7 0.419, 0.920, 1.908, 5.0 NC NC 

2.409 
a P1 is ‘L’, ‘S, or ‘U’, depending on whether the solution on leg 1 is long-period, short-period, or unique-period, 

respectively. Similarly for P2 on leg 2. 
Leg does not cross Mars’ orbit. 

Table 7 
some long Earth-Mars legs 

Ballistic outbound SlL1-B cycler with 

Approach Flyby 
VW, altitude, 

km 
- 

Encounter Date w s  
Earth-1 30 Jan. 2014 4.7ga 
Mars-2 2 July 2014 7.11 26,419 
Earth-3 8 Dec. 2016 3.99 27,739 
Earth-4 22 May 2018 3.99 19,886 
Mars-5 15 Sept. 2018 6.42 12,764 
Earth-6 7 April 2021 4.51 22,923 
Earth-7b 21 Sept. 2022 4.51 9,813 
Mars-8 22 Aug. 2023 3.18 2,356 
Earth-9 24 July 2025 8.04 37,477 
Earth-10‘ 21 Jan. 2027 8.04 10,449 
Mars-11 25 NOV. 2027 6.27 95 
Earth-12 23 Sept. 2029 6.25 22,330 
Earth-13 15 March 2031 6.25 40,823 
Mars-14 15 July 2031 - 

a Launch V,. 

- 

Followed by a long Earth-Mars leg of 335 days. 
Followed by a long Earth-Mars leg of 308 days. 

However, our construction method is not com- 
pletely general. We investigated a simple extension 
and discovered some remarkable, previously- 
unknown cyclers. Many other possible extensions 
were identified and still remain to be explored. 

Table 8 
short Earth-Mars legs 

Powered outbound SlL1-B cycler with 

Approach Flyby 
vi0 7 altitude, 

Encounter Date km/s km 
Earth-1 30 Jan. 2014 4.7ga - 
Mars-2 
Earth-3 
Earth-4 
Mars-5 
Earth-6 
Earth-7 
Maneuver 
Mars-8 

Earth- 10 
Earth-9 

Mars- 11 
Earth- 12 
Earth-13 

2 July 2014 
8 Dec. 2016 
22 May 2018 
15 Sept. 2018 
7 April 2021 
21 Sept. 2022 
24 Sept. 2022 
1 April 2023 
18 June 2025 
19 Dec. 2026 
28 March 2027 
3 Oct. 2029 
18 April 2031 

Mars-14 20 July 2031 
a Launch V,. 

AV Maneuver. 
Subsurface flybys will be removed in a future work. 

7.11 26,419 
3.99 27,739 
3.99 19,886 
6.42 12,764 
4.51 22,923 
4.51 10,000 
0.96b - 
3.63 6,830 
8.53 23,239 
8.53 -604‘ 
14.38 -519‘ 
11.94 864 
11.94 79,371 
- - 
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