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We developed technique for extracting the phase, visibility and amplitude 

information as needed for interferometric astrometry with the Space Interfer- 

ometry Mission (SIM). Our analytical model accounts for a number of physical 

and instrumental effects, and is valid for a general case of bandpass filter. We 

were able to obtain general solution for polychromatic phasors and address 

properties of unbiased fringe estimators in the presence of noise. For demon- 

stration purposes we studied the case of rectangular bandpass filter with two 

different methods of optical path difference (OPD) modulation - stepping and 

ramping OPD modulations. A number of areas of further studies relevant to 

instrument design and simulations are outlined and discussed. 
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1. Introduction 

SIM is designed as a space-based 10-m baseline Michelson optical interferometer op- 

erating in the visible waveband (see Ref. 1 for more details). This mission will open 
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up many areas of astrophysics, via astrometry with unprecedented accuracy. Over a 

narrow field of view SIM is expected to achieve a mission accuracy of 1 pas. In this 

mode SIM will search for planetary companions to nearby stars by detecting the as- 

trometric “wobble” relative to a nearby (< 1”) reference star. In its wide-angle mode, 

SIM will be capable to provide a 4 pas precision absolute position measurements of 

stars, with parallaxes to comparable accuracy, at the end of a 5-year mission. The 

expected proper motion accuracy is around 3 pas/yr, corresponding to a transverse 

velocity of 10 m/s at a distance of 1 kpc. 

The SIM instrument does not directly measure the angular separation between 

stars, but the projection of each star direction vector onto the interferometer baseline 

by measuring the pathlength delay of starlight as it passes through the two arms 

of the interferometer. The delay measurement is made by a combination of internal 

metrology measurements to determine the distance the starlight travels through each 

arm, external metrology measurements that determine the length and local orienta- 

tion of the baseline, and a measurement of the central white light fringe to determine 

the point of equal optical pathlength. 

This paper discusses analytic model for the white light fringe data extraction. Our 

goal here is to establish functional dependency of the white light fringe parameters 

on the instrumental input parameters. The problem of interference of electromag- 

netic radiation is well studied and extensive number of publications on this subject 

are available (see Refs. 2-14 and references therein). Because of complexity of this 

problem in the general case of polychromatic light, most of the current research is 

done numerically. While numerical studies have proven to be extremely valuable in 
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analyzing the interference patterns and are very useful in addressing various instru- 

mental effects, the analytical methods provide the much needed critical understanding 

of the white light interference phenomena. The primary motivation for the work was 

the idea to use the averaged and bias-corrected complex phasors to estimate the ex- 

ternal pathlength difference for the incoming polychromatic light. A definition for the 

complex visibility phasors is stemming from the form of a complex visibility function, 

v = ve24, where v is the visibility and 4 is its phase. Decomposing this expression 

onto real and imaginary parts as v = X + ZY, one obtains the complex visibility 

phasors, X = vcos4 and Y = vsin4. SIM will be able to effectively determine both 

visibility and phase of the fringe, but for the astrometric purposes the phase must be 

determined to a much higher accuracy of a few tens of picometers. Phase determina- 

tion in the presence of noise is a non-linear process which requires careful approach 

to averaging and correcting for biases in the data.15 It will be demonstrated below 

that analytic solution may be used as a tool to study the complex interferometric 

phenomena on a principally different qualitative lo 

In this paper we derive analytic model that may be used to  describe photo- 

electron detection process. We analytically describe the physical and instrumental 

processes that are important in estimating the fringe parameters (i.e. intensity of 

incoming radiation, it's visibility and the phase of the fringe). Effects that are not 

included in the model are due to polarization of both incoming light and the instru- 

mental throughput, effect of the wavefront-tilt, low frequency vibrations, drifts, jitter, 

etc. We plan to address these issues in a subsequent publication.'* 

The paper is organized as follows: In Section 2 we introduce 
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for the polychromatic fringe pattern and define the quantities that are forming the 

astrometric signal on the CCD. Specifically, we derive solution for the white light 

fringe equation in the general case. In Section 3 we resent general analytic solution 

for complex visibility phasors and will discuss a noise suppression approach. In Sec- 

tion 4 we develop technique for studying the rectangular bandpass filter. We also 

obtain functional dependency of our solution in the two cases of OPD modulation, 

namely the stepping and ramping modulations. In Section 5 we present conclusions 

and recommendations for future studies of accurate fringe reconstruction. 

2. Parameterization of Polychromatic Fringe Pattern 

The current algorithms and simulations for optical interferometry are all based on 

monochromatic light. This is a good approximation for some of existing testbed con- 

figurations that use as many as 80 spectral channels for dispersed light. Nominally the 

flight system will use four to eight channels for guide interferometers. Because of the 

large bandwidth of each channel (87.5 nm), the quasi-monochromatic assumptions 

are not valid, and modifications to the algorithms are necessary.l6? ’’ In this Section 

we will introduce a method designed to address this issue. 

Description of the interferometric pattern in the polychromatic case that involves 

a finite bandwidth of radiation - is a complicated task. Thus, the observational con- 

ditions in the case of polychromatic light are significantly altered compare to the 

simplicity of the monochromatic process. In general, all the quantities involved are 

complicated functions of the wavelength. A way to describe this process is to collect 

contributions of all infinitesimal constituents of polychromatic light at different wave- 
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lengths within the bandwidth of the incoming electromagnetic radiation.l5 In other 

words, the total number of photo-electron counts, N ,  registered by a CCD detector 

per wavenumber and per unit time, may be given by the following expression: 

where .F( k )  is a dimensionless factor representing the total instrumental through- 

put;16j17 Zo(k), V ( k )  and 4 ( k )  are the intensity, visibility and phase of the incoming 

light; z ( t )  is modulated internal delay. We are using a nomenclature where a wavenum- 

ber k relates to the wavelength as follows k = F. We also accounted for the nominal 

5 phase shift due to the SIM beam splitter, which produces a sine fringe rather than 

a cosine one. 

Note that the total instrumental throughput depends on a number of other fac- 

tors, some of these are the collective area of the detector, quantum efficiency of CCD, 

and overall spectral response of the instrument. Our goal here is to derive observa- 

tional equation that may be used to estimate the apparent fringe phase and visibility. 

To estimate the true source visibility and phase one would have to perform a set of 

additional calibration and estimation procedures that will be addressed elsewhere.I8 

A .  Integration Over the Spectral Bandwidth 

In this Section we will perform integrations of Eq. (1) over wavenumber space and 

time, that are necessary to derive analytical model. This model will be used further 

for the purposes of the fringe parameters estimation. 

Let us first perform integration over the SIM wavenumber bandwidth k E [k&, k&], 

where k;,, = 450 nm is the beginning of the SIM bandwidth, and k&, = 950 nm is 
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the end of this bandwidth, thus IC E [450,950] nm. A formal integration of Eq.( 1) over 

dk leads to the following result 

Gn 
N(t)&IM = J N ( k , t ) d k ,  AkSIM = kS+IM - k&. (2) 

ksrn 

In the case of channeled (or dispersed) spectrum output, the integration of this equa- 

tion over the range of wavenumbers is straightforward. For this purpose, we designate 

index, C, to denote a particular spectral channel. Suppose that there exists a total of 

L spectral channels, thus C E [l, L]. 

Our definition for the spectral channel C implies the width of the channel Ake = 

k: - kF and existence of a “central” wavenumber ke within this channel. We also, 

assume continuous spectrum within the bandwidth, so that there is no gaps exist in 

the interval k E [k&,kAM].  A consequence of this is the equality kF+l = IC?, which 

leads to the following discrete representation of the bandwidth 

L L 

Result Eq. (3) allows us to rewrite Eq. (2) as follows: 

where Ne(t) is the instantaneous number of photons within a particular spectral 

channel. As a result, Eq. (1) may be integrated as given below 

or, equivalently 

1 k: 

Ake k; 
Ne(t)  = - / F ( k ) Z o ( k )  (1 + V ( k )  sin [ 4 ( k )  + k ~ ( t ) ] ) d k .  
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This equation is our first important result. It will help to focus our attention from the 

discussion of coherent processes within the whole wide bandwidth, onto addressing 

this processes on a smaller scale - within a particular narrow spectral channel, k'. 

B. Definitions for the h n g e  Parameters 

At this point, it is convenient to introduce a set of useful notations. First of all, we 

define the average total intensity of incoming electromagnetic radiation, Toe, within 

the k'-th spectral channel as 

It is natural to introduce normalized intensity of light f o e  within the k'-th channel: 

These new notations allow to present Eq. ( 6 )  as given below 

kl+ 

Ne(t) = Toe ( 1  + / foe(k)V(k) sin [+(k) + k z ( t ) ] d k  
Ake k; 

(9) 

In the next Section we will define the fringe visibility, phase and mean wavenumber. 

1. Fringe Visibility, Mean Wavenumber and Phase 

To further simplify the obtained equation, we will introduce functional form the fringe 

visibility, the phase and the wavenumber notations. Thus, the fringe visibility, V&, 

within the k'-th channel is given as 
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Similarly to Eq. (8) we denote normalized visibility in the channel as 

These definitions help us to re-write equation (9) in the following compact form 

To define mean wavenumber, Ice, and mean phase, $e, for the C-th spectral channel 

we will use the following expression: 

There are two ways to define the phase within the channel. Thus, it is tempting to 

define the mean phase as 

This definition is acceptable for narrow spectral channel, however for a wide channel 

one needs a more convenient form, namely 

and is simply the phase value at the specific wavenumber. In our further analysis we 

will be using this later definition. (The relationships between the two definitions for 

the phase Eqs. (14) and (15)will be addressed in Appendix A). 

The three introduced quantities (i.e. the visibility, mean wavenumber ke and phase 

at the mean wavenumber 4 ( k e ) )  allow to proceed with integration of Eq. (12). 
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C. Complex Fringe Envelope Function 

Definitions introduced in the previous Section allow us to separate functions ke and 

4(ke) from the functions with direct dependency on the wavenumber k. As a result, 

Eq. (12), for the total photon count, may be presented as below 

To further simplify the analysis, it is convenient to introduce the complex fringe enve- 

lope function, W e  [Ake, +(ke), z ( t ) ] ,  which is given as 

As a complex function, We (please refer to discussion of the fringe envelope function 

given in Appendix B) may be equivalently presented by its real, Re{ @e}, and imaginary, 

Im { We}, components: 

We = Re{We} + j  Im{We} (19) 

with 

Re{*[} = 1 Sk'Poe(k) COS [(k - ke)z(t)  + 4 ( k )  - 4(ke)]dk,  

Im{l&'..} = - %(k)  sin [ (k  - ke)z( t )  + 4 ( k )  - 4(ke)]dk. 

Ake k; 

1 k' 

Ake k; 
(20) 

This definition of complex envelope function given by Eq.(17)-(20) allows us to present 

9 



expression (16) in a simpler form: 

The complex fringe envelope function, fie[z(t)], as any complex function, may also be 

represented by its amplitude and its phase, namely: 

where &e and Re are the amplitude and phase correspondingly. For the complex envelope 

function Eq. (19) these two are given as follows: 

&e(t) = \/Re2{We} + lm2{We}, 

Finally, we re-write Eq. (21) in the following general form: 

Note that the apparent visibility of the fringe now is the product of the true averaged 

visibility and the modulus of the phase corrected Fourier transform of the filter function, 

evaluated at the current delay or 

(25) F, = Voe f i e  Voe &e e j ( d ( k t ) + n t )  

It is known that the transfer function We describes the coherence envelope.2 If Voe(k) - 
.F(k)Z~(k)V( lc )  is symmetric, then f i e  is real valued, Re = 0, and only at zero delay,ll where 

the envelope is at peak, is the true visibility observed. 

D. Temporal Integration 

The last integration to be performed in Eq.(l) (or equivalently Eq.(24)), is the integration 

over time. The optical pathlength difference may be modulated either as a set of discrete 
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values corresponding to a number of steps in the OPD space (stepping PZT modulation) or 

by ramping PZT over the range of OPD values. The total integration time, At, is the sum 

of durations of eight temporal bins. (While our result is applicable for arbitrary number of 

temporal bins, the SIM design will utilize 8 temporal bins): 

Direct integration of Eq. (21) leads to expression for the total number of photons collected 

at each PZT stroke: 

where NeiATi is the total number of photons collected in a particular i-th temporal bin and 

for the t-th spectral channel. Substituting Ne(t) from Eq. (24) directly into Eq. (27), one 

obtains following expression for Ne;: 

To complete this integration, we assume that quantities Zoe, %e, $ (ke) ,  and ke do not 

change with time during the photon-counting intervals. The only quantity that is 

explicitly varies with time - is the optical pathlength difference z( t ) .  

The integration over time may be performed in a general form and corresponding 

expression for the photon count, Nei, is given as follows: 
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Furthermore, with definitions for Re{Pei} and Im{%i}, Eq. (30)) this complex matrix 

may be presented as given below 

which is conveniently transforms as follows 

33) 

where the complex envelope function We given by Eqs. (17)-(18). Eq. (33) may further 

be transformed to establish its true dependency on time and wavenumber. To do this, 

we substitute the expression for the complex envelope function from Eq. (18). Thus, 

one obtains the following expression for the matrix Pei:  

Equivalently, one has following expression with explicit dependency 

(34) 

(35) 
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Finally, we have defined everything that is needed to study Eq. (29), for the 

polychromatic fringe, which may equivalently be presented in a matrix form as below 

where the complex matrix P e i  is given by Eq. (35). 

The obtained result Eq. (29), (35) (or, equivalently Eq. (36)) constitutes the gen- 

eral form of expression for the polychromatic fringe. We will use this result to finalize 

the development of the general from of the observational model for polychromatic 

case with arbitrary phase modulation. 

Ideally, one would need to determine not only three quantities ZoeL& cos 4(ke), 

ZoeV& sin(ke), and Toe, but the full functional dependency of the original quantities. 

However, the finite width of the observational band-width Ake complicates the es- 

timation process by bringing the non-linearity in the observational equation via the 

envelop function W .  Note that if one neglects the size of the bandwidth Ake with 

respect to the mean wavenumber ke or Ake/kl + 0 (the envelop function becomes 

unity W -+ l), one recovers the full simplicity of the monochromatic case.15 

3. General Solution for Polychromatic Phasors With Noisy Data 

Currently in use, there are two fringe estimators, one for visibility (the unbiased 

estimator is V 2 ) ,  and one for the phase (the unbiased estimator is the complex phasor). 

The V2 estimator is already worked out in much detail (i.e. Refs. 2-14, 16) if the 

complex phasor estimator is completed. So the development of the complex phasor 
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was the main purpose for the presented work. As it is known, the complex fringe 

visibility can be represented by a phasor; if the fringe is stable, we can add the phasors 

vectorially over multiple samples. This co-adding can provide an improved signal-to- 

noise ratio. To co-add the fringe phasors requires a phase reference, for instance the 

white light p h a ~ e . ~ * ~  

In this Section we will develop optimally-weighted solution that accounts for a 

number of noise sources and will be applicable for a general case of delay modulation. 

A .  Parameterization of the Fringe Equation 

For the purposes of clarity we will omit spectral index C. All the obtained results are 

valid for any channel and thus could be easily reconstructed, if needed. 

In the case of noisy data, observations of phonon-counts Ni are actually done 

with errors and, in reality, we observe Ni = Ni + e;, where fii is the mean value of 

photon counts at the i-th temporal bin and ~i is a random variable. We assume that 

ei are random variables that are primarily due to gaussian statistics. (This approach 

may be extended to incorporate other sources of noise.17 The corresponding results 

will be reported elsewhere.) that are distributed around zero and following relations 

are valid 

E(E2) = 0, E(€?) = a; (37) 

In the general case one must account not only for the Gaussian statistics of read-out 

process, but also for the Poison statistic that governs photo-emission (and photo- 

counting) process. Thus, a correct approach would be to assume that ~i is a sum 

of two terms ~i = p ~ y  + (1 - p) E [ ,  where E? is Gaussian and E [  is Poissonian 
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variables and p is a number between 0 and 1. Expected complication arises from the 

fact that standard deviation computed for the photon-counting Poissonian bias is 

actually proportional to the signal (of)' o( Ti (see discussion in Ref. 14). This issue 

is out of scope of the present paper and we will address this issue at a later time. 

We also assume that Ni are independent, therefore, we may form a diagonal 

covariance matrix for the quantities Ni (or equivalently for ~ i )  with dispersions o? on 

the diagonal: 

... 

... 

... 

... 

OF2; 0; ... 0 

0; 0 2  ; ... 0 -2 

... ... ... 0 

-2 0; 0; ... ON 

where Gy is the matrix of weights. Therefore, in the case when noise is present in the 

data, equation (29) has following form: 

Equation (39) may equivalently be presented in a matrix form as below 

or, equivalently, 

with indexes i and a running as i E (1, ..., N }  and a E {1,2,3}.  Vector X" is the 

vector to be determined and matrix AT = Ai, is the 3 x N rotational matrix in the 
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phase space. A maximum likelihood solution to the system of equations (41) may be 

given by the following system of equations 

X" = ALi"Ni, where 
N 

A: = (ATG,A)- 1 T  A G,, (42) 
i 

with A: being an optimally-weighted pseudo-inverse matrix. Note that by choosing 

different gain matrix16 instead of optimally weighted least-squared matrix Eq. (38), 

one may obtain solution with different, specifically designed properties. Nevertheless, 

our solution has enough embedded generality as it allows for arbitrary properties of 

noise contribution, which will be further explored below. 

B. Optimally- Weighted Pseudo-Inverse Matrix 

In this Section we will find solution for the pseudo-inverse matrix A: that was intro- 

duced by Eq.(42). To construct this matrix we will use the weights matrix G, given 

by Eq.(38) and the rotation matrix A, given by Eq.(33) as: 

where we denoted si = lm{pi},ci  = Re{pi}. 

Let us construct matrix (ATG,A) first. Calculation of (ATG,A) is straightfor- 

ward even for the most general case of arbitrary number of temporal bins ( N  2 3) and 

with arbitrary integration intervals  AT^ # Arj for i # j ) .  Thus, after some algebra 

we find the following structure: 
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By inverting the obtained result one constructs the covariance matrix A of the fol- 

lowing structure: 

A = (ATG,A)-' = 

N 

ij 33 

where determinant of the matrix (ATG,A), A, = det II(ATG,A)II, is given as 

with a triple summation for all the indexes denoting the temporal bins and running 

from 1 to N ,  namely V { i , j , k }  E [ l , N ] .  

These intermediate results allow us to write the solution for the ( N  x 3) optimally- 

weighted pseudo-inverse matrix A: = A:; in the following compact form: 

where coefficients &, Bi, C i  and Do depend on duration of each temporal bin, mean 
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wavenumber and variances for the data taken in each bin, and are given by 

N 

Definitions for the quantities si and ci, si = Im { pi}, ci = Re{ pi}, allow to present 

expressions (47) in a more convenient form. First, remember that complex matrix, pi, 

as any complex function, may be represented by its amplitude and its phase, namely 

where p j  and rj are the amplitude and the phase of this complex matrix correspond- 

ingly and are given as follows: 

with complex matrix @ti is given by Eq. (33). These quantities allow presentation of 
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Eqs. (47) in the following form: 

N 

X 2 2 2  E = > :  ij ffi ffj f f k  

k 

At this point we have all the expressions necessary to present the optimally- 

weighted solution for the polychromatic phasors. 

C. Photon Noise- Optimized Solution for Polychromatic Phasors 

An optimally-weighted solution for the quantities X" may be obtained directly now 

from Eq.(42) with the help of expressions (46)-(47) in the following compact form: 

1 
1; = -EN k 

p k  

with coefficients of d;, 6, C i  and Do are given by Eqs.(47) and (50). 
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The obtained solution for the polychromatic visibility phasors given by Eq. (51) is 

given in the form of a linear combination of weighted photon counts recorded during 

a particular integration period. This form turned out to be very when analyzing 

contributions of CCD pixels that are systematically biased. The obtained result may 

be used to de-weight 'bad' pixels (in a statistical sense) and, thus, to reduce the 

problem of biases while estimating fringe parameters. 

This form allows to express an optimally-weighted solution for visibility, phase 

and the constant intensity terms in a familiar compact form: 

@ = ArcTan 

The form of the obtained solution is simple to understand and it is straightforward 

to implement in the software codes. All the information necessary to calculate the 

3N coefficients of di, Bi, C i  and Do is presumed to be known before the experiment. 

Thus, for the case when N = 8 one would have to calculate only 24 numbers from 

Eq. (47). These numbers correspond to 8 numbers of di, 8 numbers of and 8 

numbers of C i .  Then, by taking the data and estimating variances ai one may process 

the data with the help of Eqs. (51) or directly Eqs. (52). This approach is currently 

being utilized and corresponding results will be reported elsewhere. l8 
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4. Rectangular Bandpass Filter 

In this Section we will discuss the properties of rectangular bandpass filter, which 

is, due to its analytical simplicity, is the most known construction in Fourier optics. 

This analysis will allow us to establish correspondence with the previously obtained 

results both for monochromatic and polychromatic light. 

To take advantage of the results derived in the previous section, we must first 

decide on the properties of the bandpass filter. This decision in return will affect the 

properties of the envelop function. Below we shall develop a model for a special case 

of the bandpass filter - a rectangular bandpass filter denoted here as Fe, which is 

done analytically in the following form 

We can also assume that the width of a spectral channel is small, so that both intensity 

of incoming radiation, Zo(k), and apparent visibility, V ( k ) ,  do not change within 

the spectral channel (in particular, this leads to &(k)  1 in Eqs. (10) and (11). 

Therefore, the following conditions are satisfied with a particular spectral channel, e: 

Zo(k) = const, V ( k )  = const, Foe= const, (54) 

(55)  

where doe = is the delay within the e-th channel. 

One may perform integration of the fringe envelope function f i e [ x ( t ) ]  which is 

given by Eq. (17) (or use equation (91) for the unperturbed envelope function and 

then apply iterative procedure outlined in Appendix B.). To the second order in phase 
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variation (i.e. O( q)), the resulted envelope function has following properties: 
8% 

Let us introduce a convenient variable, K. = k - Ice, and remember that Ake = 

k l  - k e  and ke = i(kz + kF)  are the width of the spectral channel and the mean 

wavenumber. This allows us to integrate expression (56) over the wavenumber space 

We can now present Eq. (33) for matrix P e i  as follows: 

At this moment, we introduce another convenient variable, r = t - ti. Analogously, 

Ari = t+ - t i  and ti = i(t+ + t i )  are the duration of the temporal integration within 

the i-th bin and the mean time for this bin correspondingly. This result is used to 

transform Eq. (58) as below: 

with coefficient S P e i  given by 

The obtained result explicitly depends on the functional form of the OPD mod- 

ulation, z( t ) .  To integrate this equation one first needs to make certain assumptions 
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on the temporal behavior of x ( t ) ,  which will be done in the following Sections. At 

this moment we present Eq. (29) in the following form: 

where the complex matrix S P e i  is given by Eq. (60). The importance of separat- 

ing terms with Spei is in the fact that one can establish clear correspondence with 

monochromatic light, for which SPe i  = lei, the identity matrix. 

In the next two subsections we will study two different special cases of OPD mod- 

ulation, namely the stepping and ramping modulations of the optical path difference. 

A .  Stepping Phase Modulation 

The stepping phase modulation realized when the pathlength difference is changes 

as a set of discrete values corresponding to a number of steps in the OPD space. 

mathematically this process represented as follows: 

with ti = T ( t i  1 +  + t i ) .  This procedure defines the temporal bins that will be used to 

modulate the interferometric pattern. 

Conditions (62) allow for a significant simplification of temporal integration in 

Eq. (60). It simply is leading to a substitution x ( t )  -, xi in Eq. (21), and matrix P e i  

takes the following form 
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As a result, to the second order in the phase variation (Le. q5(ke) x q5e + O ( q l  )), 

the observational equation Eq. (61) is taking form as below: 

ake kc 

The obtained result Eq. (64) clearly depends on the particular form of the envelope 

function. As such, it has most of the parameters that are necessary for the phase 

estimation purposes in the case of wide bandwidth. 

For the most practical cases the value of the sinc function will be close to sinc - 1. 

Indeed, let us analyze the argument of this function, iAke(xi +doe). Thus, one might 

expect that within the spectral channel the phase will stay constant, hence doe = 

x 0. Furthermore, for the estimation purposes let us assume that all the step- 

sizes xi are essentially xi = i%, where n is the total number of temporal integration 

bins, i is the number of a particular temporal bin, i E 1, N ,  and A0 is the modulation 

wavelength or A0 = E, where ko is the corresponding modulation wavenumber. Also 

remember that width of a spectral channel is related to the total SIM bandwidth as 

Ake = y, where AksiM is the total SIM bandwidth and L is the total number of 

spectral channels used for the white light fringe detection Therefore, one has 

ake 

Assuming A i M  = 450 nm and A Z M  = 900 nm, and A0 = 900 nm, thus yielding 

= 1. The maximal value for the expression (65) is realized when i = N ,  thus 
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Currently, there are different numbers of spectral channels used to process data from 

our testbeds. This number may be as large as L = 80 and as small as L = 4. Of coarse, 

when L = 80, the ratio n / L  becomes n / L  = 0.03927 and, thus, sinc[$Akezi]I~=so = 

0.99974, and similarly for L = 4 the sinc function becomes sinc[$Akezi]I~=4 = 0.90032. 

We will address the issue of phase estimation sensitivity to the width of a spectral 

channel Ake at a later time." 

This observation allows us to present the sinc function as a series with respect to 

the small parameter Akex (with x being defined as z = zi + doe) as 

one can present the expression Eq. (64) in the following form: 

Nei = Toe [l + 

The obtained expression models the expected number of photons detected at the 

CCD for the rectangular bandpass filter and stepping phase modulation. It extends 

the results obtained for the monochromatic case on the finite size spectral bandwidth. 

This fact is indicated by the explicit dependency of the obtained result on the width 

of a spectral channel Ake. (For the most of the interesting practical applications, the 

size of the delay within a particular spectral channel is very small doe = $$ x 0, 

which further simplifies Eq. (68)). 
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B. Ramping Phase Modulation 

In this Section we will discuss another type of phase modulation - the case when 

the phase is linearly changes with time. This modulation utilizes the phase ramping 

technique.(For more details, see Refs.3-8.) To develop analytical solution we will be 

using the system equations developed above, specifically Eqs. (29) and (33). 

The optical path difference for the case of ramping phase modulation is modeled 

as a continuous function of time as follows: 

where z o  is the initial PZT position and is the instantaneous velocity of PZT motion. 

Remembering the definition for r as r = t - ti, and Ari = t+ - t i  and ti = (t: + t i ) ,  

Eq. (60) takes the form: 

with coefficient SPei given by 

and z ( r )  = doe + z(ti) + 2r r. This allows us to present Eq. (61) in the following form: 

where the complex matrix of additional rotation in the phase space, SPei, is given by 
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Eq. (60). Equation (72) may equivalently be presented in a matrix form as below 

The result of integration of Eq.(71) may not be presented in a compact analytical 

form. It rather could be expressed in the form of two functions defined as Sinlntegral 

and Coslntegral. To simplify the analysis, the sinc function may be given in the form 

of power series expansion with respect to the small parameter Akez(r) as given by 

Eq. (67). This expansion allows us to present Eqs. (71) in the following form: 

where z ( r )  = doe + x( t i )  + v r  = zi + v r  with zi = doe + z(ti). This equation, (74), 

was integrated to obtain the following result for 6Pei: 

where complex coefficients d e ;  is given as follows: 
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and Be, is computed as follows: 

The obtained expressions may be used to simplify the results of temporal integration 

Eq. (72). As a result, the coefficients Re{GPei} and lm{bpei} in the fringe equation 

Eq. (72) may be written in the following form: 

with zi = doe +  ti) doe + ZO + v ti. 
The obtained expression models the photon flux detected at the CCD for the case 

of rectangular bandpass filter and ramping phase modulation. It extends the results 

obtained for the monochromatic case on the finite size of spectral bandwidth. This 

fact is indicated by the explicit dependency of the obtained result on the width of a 

spectral channel Ake. 

5. Discussion and Future Plans 

The main objective of this paper has been to introduce the reader to the concepts and 

the instrumental logic of the SIM astrometric observations, especially as they relate to 
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estimation of the white light fringe parameters. The set of formulae described herein 

will serve as the kernel for the future mission analysis and simulations. We have 

also developed a set of expressions that may be used for fringe visibility and phase 

extraction for both SIM science and guide interferometers. The obtained expressions 

depend on the effective operational wavelength of OPD modulation, the width of a 

particular spectral channel Ake with the mean wavenumber ke and corresponding 

wavelength X i .  Our model accounts for a number of instrumental and physical effects 

and is able to compensate for a number of operational regimes. 

The logic of our method is straightforward: one first assumes the desirable prop 

erties of the bandpass filter, then finds the corresponding envelope function, and then 

applies the obtained expressions (which are valid for a generic case). The obtained 

solutions for the envelope function W and, most specifically, bPei may be directly 

substituted either in the expression for the complex visibility phasors Eq. (50) and 

(51), or into equations for the visibility, amplitude and phase of the fringe, given by 

Eqs.(52). We applied this formalism to the case of a rectangular bandpass (the ob- 

tained results are given by Eqs. (97)-(100)). While the complex visibility phasors are 

linear with respect to photon counts, the explicit expressions for the fringe parameters 

are non-linear. This fact may be used to design specific properties of unbiased fringe 

estimators for processing the white light data. In our further work we will numerically 

address the problem of unbiased estimators for the fringe phase, visibility and group 

delay. This effort is currently underway and results will be reported elsewhere." 

Our simulations show18 that, while the model of the rectangular bandpass filer 

is working quite, for the 'real life' one must account for the effect of leakage of light. 
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This effect is concerned the leakage of light onto the studied spectrometer pixel of 

the detector from the adjacent pixels with different wavenumbers. At this moment, 

it seams more appropriate that a combination of the rectangular bandpass filter and 

the additional effect of light leakage from the adjacent pixels that must be included 

into the model of a CCD detector. The corresponding analysis, simulation results and 

implications for the instrument design will be reported elsewhere. l8 

A. Two Definitions for the Fringe Phase 

In this Appendix we will address the issue of the mean phase definition which requires 

some additional work. It is tempting to define the mean phase as 

However, one needs to relate this expression to the quantity +(ke),  which is the phase 

value at a particular wavenumber. Assuming that phase +(k)  is a slow varying function 

of k and, as such, it may be expanded in a Taylor series as follows: 

We can now substitute this formula directly in Eq.(80), which results in 

Or in other words, the phase value +(ke) at a particular wavenumber ke is related to 

the mean phase +e within the spectral channel with width Ake (i.e. Eq.(80)) by the 

following expression 
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where pp) is the dimension-less second-order moment of wavenumber distribution 

within the spectral channel of interest: 

In the general case, when the higher order moments are considered, this expression 

takes the following form: 

(PI with moments given as follows: 

Note that the wavenumbers within a spectral channel may be considered uni- 

formly distributed, thus prompting to use $(ke) = + O(Aki) .  However, the knowl- 

edge of the second moment ,up) may be important in combining the fringe solution 

for the whole operational bandwidth. This question will be addressed elsewhere. 

B. Approximation for the Complex Fringe Envelope Function 

Expression for the fringe envelope function (17), contains terms that are of the first 

and higher orders of phase variation within the l-th spectral channel. We shell sep- 

arate these terms by expanding phase 4 ( k )  in the Taylor series around the mean 

wavenumber ke as given by Eq. (81). This transforms the argument in Eq. (17) as: 



where we dot = Et 

small phase variations within the spectral channel AICtql 

expand the exponential argument in the expression Eq. (17) as given below 

in the group delay within the t-th channel. In the regime of 

AICtdot << 1, we can 

lke 

ke 

exp{ j [ ( I C  - rce) ( 4 t )  + dot) + 0(Ak3]  } = 

= { 1 + j ( I C  - kt )  dot + O(Ak;)} - exp{ j  ( I C  - ICt)x(t)}. (89) 

This last expression may be used to rewrite the phase-dependent envelope func- 

tion from Eq. (17) as 

Defining the unperturbed fringe envelope function (i.e. that is un-affected by the 

phase variations inside the spectral channel) as below 

+m 
@t[~kt ,z ( t ) ]  = J vot(~) ,j ( k - - k e ) 4 t )  dk 

-m 

We may present expression (90) for envelope function in the following form: 

where superscript ' denotes partial derivative with respect to OPD 6/6x(t). 

At this point we have established the functional dependency of the envelope 

function, but for the immediate purposes we will be using a generic form for this 

function, @t [AICt, x( t ) ]  presenting it only by it's amplitude and phase: 

Similarly to the expression (92) we re-write this result in the following form 



At this moment we show the functional form of real and imaginary components of 

the envelope function. Thus, from Eq. (94) one immediately has 

Im{me[Ake,$e,xi]} = EesinRe + doe(&isinRe + &eo; cos!&) + O(Ak;). (96) 

The obtained equation exhibits explicit dependence on the phase variation inside 

the spectral channel represented by the term doe = a$/aklkl. This issue will be 

addressed further. 

C .  Solution for Rectangular Bandpass and Stepping OPD Modulation 

In consideration of completeness, we present here a general case solution for an 

optimally-weighted visibility phasor for a rectangular bandpass and stepping OPD 

modulation. In the previous Section we obtained this solution in a general case, there- 

fore, the desired solution may be obtained directly with the help of expressions (51). 

Corresponding optimally-weighted solution may be presented in the form of Eqs. (51) 

and (52) with coefficients Ai, Q, C$ and Do depend only on the size of modulation 

steps xi, mean wavenumber E ,  width of a spectral channel Ak, variances of the data 

a: in a particular temporal bin. These coefficients are given as follows: 

Akxj 
2 

sinc[-] sin[il(xi - xj)] + 
A k ~ j  A k X k  + sinc [ -1 sinc [ -1 sin [ il (xj - xk)] + 

2 2 



1 Akxi - Akxj N 

= 222 (sinc[-] cos kxi - sinc[-] cos 
. .  ai a j a k  2 2 
23 

Akxj 
2 

sinc[-] sin[k(xi - xj)] + 
A k ~ j  A kxk 

2 2 + sinc[-] sinc[-] sin[k(xj - xk)] + 

1 Akxi A k ~ j  - N 

C; = - C =(sinc[-l sinkxi - sinc[-l sin/cxjj) x 
. .  a i a j a k  2 2 
'3 

A k ~ j  
2 sinc[-] sin[k(xi - xj)] + 

A k ~ j  Akxk 
2 2 

A kxk Akxi 

+ sinc[-] sinc[-] sin[k(xj - Xk)] + 
]sine[-] sin[iE(xk - xi)]], + sinc[- 

2 2 

A ~ x .  AkXk + sinc[---2-] sinc[-] sin[k(xj - z k ) ]  + 2 2 

(99) 

in consideration of brevity we omitted index r! denoting a particular spectral channel. 

The obtained result Eqs. (100) clearly depends on the sinc envelope function and 

thus it has all the information that is necessary for the phase estimation purposes in 

the case of the wide band-pass. Note, that this result assumes that the phase does 

not change inside the spectral channel. Also, this result directly corresponds to the 

result obtained for the monochromatic case. This may be demonstrated by taking the 
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limit Ak/E 4 0, which will lead to recovering the familiar form of monochromatic 

fringe with coefficients A;, E ,  Cg and Do given as follows: 

N 

N 
1 = ( COS kxi - COS k z j )  x 

. .  gjuk 
$3 

N 

N 

k 

This form demonstrates that only the terms with i # j # k are producing a 

non-zero contributions to the result, while the terms where at least two of the indexes 

are equal (i.e. i = j or i = k or j = k )  will vanish from the sum. 
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