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Long Life Hollow Cathodes for High Power NEP Mission

Existing Hollow Cathode Life Inadequate for NEP Missions

NEP engines need to operate for 10 years

Longest duration hollow cathode failed after 3 years
Approach

10 year life tests not practical

Life requirements must verified by short tests & analysis
High Fidelity Models Are Needed

Detailed, predictive physics

Must include all failure & performance dezgpradation mechanisms
JPL Hollow Cathode Model Development W

Insert chemistry — new results including plasma effects
Insert region plasma

2-D model

Limiting results compared with published data

Orifice physics including erosion — 1-D model results
Thermal model and Keeper & beyond — coming soon!
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Hollow Cathodes are a Critical Technology for NEP

Most ion thruster have two hollow cathodes

I Magnetic 1. Dlscharge cathode
Magnets Fl'eld fon 2. Neutralizer
/ Opties NEP Ion thrusters will probably use HC’s
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Engineering model ion thruster built by NASA GRC
during 8200 hour endurance test at JPL.
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NASA/GRC Hollow Cathode Life Test

» Space Station Plasma Contactor Life Test
Longest test

Tim Sarver-Verhey, George Soulas, Mike Patterson, Scott Kovaleski
NSTAR like hollow cathode |

Constant 13 A emission current

« Hollow cathode failed to start after 3 years of operatiogw; Enclosed Kesper —-Bp
23,776 hours - Starting voltage jumped from 50V to 72 (e
28,000 hours — Failed to start

» Failure analysis
Free BaO and Ba depleted
Tungsten deposits on orifice plate

Emitter Ingert

Cathade Tube

e (Conclusion:

Failure Mechanism-Insert Depletion

Figure |, ¢ of & flight HCA (drawing not to.scale).

Figure from “A Review of Testing of Hollow Cathodes for The International
Space Station Plasma Contactor”S. D. Kovaleski, M. J. Patterson, G. C. Soulas,

T. R. Sarver-Verhey, NASA Glenn Research Center, IEPC-01-271
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Barium Ionization Reduces Insert Life

* Previous models of insert life based on equilibrium chemlstry
Lipeles & Kan, Kovaleski ,
Observed Barium loss in EP hollow cathodes not much slower than vacuum cathodes.
BaO-Ca0-Al203 Phase Diagram
 New model includes barium ionization

1.0

Ba,Cag0O,(s) BaO(g)+ Ba, ,Caz0, (s) e — Phase Diagram
2BaO(g)+1/3 W 1/3Ba;WO, + Ba(g) 2 4t depeton
Ba(g) Ba"+e <«— NotIncluded Previously - .

* Ionization mean free path the order of a millimeter §
Ba ionization potential ~ 5.2eV  Tinsert ~0.1eV \\\q
Insert plasma n.~104'm3 T, ,~1eV e =y
Tionization ~ 3 x10° sec 004

Barium ions hit wall with ~10eV kinetic energy because of sheath® °' °2 ©* o4 c(:o " 07 03 0o 10
* Results

Very low barium neutral partial pressure in insert region

Barium loss rates greater than models assuming pressure equilibrium

* JPL lead team pursuing new hollow cathode designs that use proven traveling
tube cathode techniques to increase insert life

New Approaches For Hollow Cathode Inserts
Iridium-Tungsten Insert
BaO Dispenser
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» New physical model — Ion transport
dominated by charge exchange with
neutrals

e Reduces to ambipolar diffusion
equation

* Neglecting axial variation, Bessel
function zero sets upper bound on
the electron temperature

Hollow Cathode Insert Pl‘*‘as‘ma Model

~10-18 .2

T ~1300K
P~ lOToryr,'
n, ~7.5x10%m>

1

~10°m << r

f CEX = insert

Ny O cpy

-V e[D,Vn]=7

A2
9—’;‘-+l?ﬁ +Cn=0
or: ror

noO'(Tef) 8el,
) N 7m,
«= D

‘a

e Comparison with data

Malik, Montarde, and Haines, J. Phys D
33, pp. 2307-2048, 2000

T %1.075eV

data __
T; =1.1e V Comparison probably

fortuitously good!

Model predicts low ion current density to insert — aveltafgg;ion velocity << Bohm velocity
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First 2-D Calculations of Insert Region Ion Density

Center Line Insert Region lon Density

* Solution of ambipolar 1.0E+22
diffusion equation :
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JPL 1-D Model of Orifice Plasma

The volume modeled includes the
orifice and the chamfered region

* Extension of previous 0-D model

* Assumes quasi neutrality »n=n, ~
Chamfered
| Region

* Continuity equations . Orifice

0
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R ens Pl |0
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* Ion and electron momentum equations
on Xe* e, Xed% Xe*
n(u, —u,)=-D,—+nu E >
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First Results From 1-D Orlﬁce Model

Elléc‘tron Temperature |

 Electron temperature rises 25 .
monotonically in orifice s 20 5 -
from insert region to e 15 M
chamfered region E o] r
» Jon density peaks in orifice g o5
Ions flow back into insert 0.0
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region Axial Distance Along Axis (m)

Ions flow out toward keeper

« Jon diffusion approximation ~ lon Density in Orifice e
breaks down in chamfer 2 ‘
) E 2.0E+23 ] —o—Neutral Density || 3p400
l’eg10n = _u.Plasma Density
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Model Shows Ionization Contribution to Current

* Jonization contributes electrons to the
current and ions to the wall

* Jonization contributes about an
ampere to the current

 Jons impact to the walls probable
orifice erosion mechanism

 Power to the wall sum of ionization

energy and ion kinetic energy Ionization loss profile similar to observed
including sheath orifice erosion data

Orifice Resistive Voltage Change lonization Power Loss
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Model Results May Explain HC Pressure Rise

* Observation: Hollow cathode pressure rises when discharge is ignited
* Neutral flow between Poisseuille and Knudsen Electron Current

(Dan Goebel private communication ) .3 -
* Inlet flow ~ 3.5 sccm % */_M
* lonization currents to the walls ~ 1 Amp é 1]
* lons that hit the walls come off as neutrals | | |
* Neutral flow from walls at > 14 sccm 0.0000 0.0005 0.0010

* Increased collisions with the wall acts as Distance Along Orifice (m)

increased viscosity resulting in increased pressure drop
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Long Life Hollow Cathodes for High Power NEP Missions

* Models being developed to describe hollow cathdde operation and wear
mechanisms

1. Insert chemistry

2. Insert region plasma (1 & 2-D)

3. Orifice and chamfer region plasma (1-D variable area)
Early results encouraging

Barium ionization increases loss rate

Insert region electron temperature set by ambipolar diffusion

Ionization profile in orifice region consistent with orifice erosion shape
 Planned Electric Propulsion Model Development

Hollow cathode models o

Xe** generation

Combined insert & orifice 2-D model

Thermal model including plasma effects
2-D discharge chamber model

Hollow cathode keeper region

Magnetic field effects on transport
Xe™ generation





