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Abstract 

The network security assessment instrument is a 
comprehensive set of tools that can be used individually 
or collectively to ensure the security of network aware 
software applications and systems. Using the various 
tools collectively provide a distinct advantage for assuring 
the security of software and systems. Each tool’s resulting 
output provides feedback into the other tools. Thus, more 
comprehensive assessment results are attained through the 
leverage each tool provides to the other when they are 
employed in concert. 

Previous portions of this work were presented at the 
IEEE Wet Ice 2000 and 2001 Workshops and are printed 
in those proceedings. 

This paper presents a portion of an overall research 
project on the generation of the network security 
assessment instrument to aid developers in assessing and 
assuring the security of software in the development and 
maintenance lifecycles. This portion, the Flexible 
Modeling Framework (FMF), focuses on modeling 
requirements and early lifecycle designs to discover 
vulnerabilities that result from interaction between system 
components that are either under development in a new 
system or proposed as additions to an existing system. 
There are early indications that this new approach, the 
Flexible Modeling Framework (FMF), has promise in the 
areas of network security as well as other critical areas 
such as system safety. Information about the overall 
research effort regarding network security is available at 
httd/securitv. iul.nasa.gov/rssr. 

1. Introduction 

The National Aeronautics and Space Administration 
(NASA) has tens of thousands of networked computer 
systems and applications. Software Security is a major 
concern due to the risk to both controlled and non- 
controlled systems from potential lost or corrupted data, 
theft of information, and unavailability of systems, 

especially mission critical systems. The cost to NASA if 
mission critical systems were compromised, would be 
enormous if these systems were brought down or 
erroneous data sent to a spacecraft. This research 
examines formal verification of IT security of network 
aware software and systems through the creation of a 
security assessment instrument for the software 
development and maintenance life cycle. [ 1,2,3,4,5,6] The 
network security assessment instrument is composed of 5 
parts: 

1. A Vulnerability Matrix 
2. 
3. 
4. 
5. 
The vulnerability contains vulnerability descriptions 

and the code used to exploit them. The SATs are a 
collection of tools available to test for potential 
weaknesses of software code. The PBT tool performs 
formal verification of properties at the code level. Like 
the PBT tool, the FMF formally verifies properties over 
the system. However, the FMF performs this action at the 
abstract level when code may or may not yet exist. The 
SSC will provide software code developers with another 
instrument for writing secure code for network aware 
applications. An ongoing effort is underway with the 
Multi-Mission Encryption Communication System 
(MECS) to pilot the usage of this security assessment 
instrument. 

Additional Security Assessment Tools (SATs) 
A Property Based Testing (PBT) Tool, and 
A Flexible Modeling Framework (FMF) 
A Software Security Checklist (SSC) 

2. The Flexible Modeling Framework (FMF) 

An innovative verification approach, which employs 
model checking as its core technology, is offered as a 
means to bring software security issues under formal 
control early in the life cycle. [ 1,2,3,4,7,8,9] The Flexible 
Modeling Framework (FMF) seeks to address the problem 
of formal verification of larger systems by a divide and 
conquer approach. First verifying a property over portions 
of the system, then incrementally inferring the results over 
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larger subsets of the entire system. As such the FMF is a: 
1) system for building models in a component based 
manner to cope with system evolution over time and, 2) an 
approach of compositional verification to delay the effects 
of state space explosion. Thus allowing property 
verification results of large and complex models to be 
examined and extrapolated appropriately. 

Modeling in a component-based manner involves the 
building of a series of small models, which will later be 
strategically combined for system verification purposes. 
This correlates the modeling function with modern 
software engineering and architecture practices whereby a 
system is divided into major parts, and subsequently into 
smaller detailed parts, and then integrated to build up a 
software system. An initial series of simple components 
can be built when few operational specifics are known 
about the system. However, these components can be 
combined and verified for consistency with properties of 
interest such as software security properties. 

The approach of compositional verification used in 
the FMF seeks to verify properties over individual model 
components and then over strategic combinations of these 
components. The goals of this approach are to: 1 )  infer 
verification results over systems that are otherwise too 
large and complex for model checking from results of 
strategic subsets combinations while minimizing false 
reports of defects; 2) retain verification results from 
individual components and component combinations to 
increase the efficiency of subsequent verification attempts 
in light of modifications to a component. 

3. FMF Verification 

The FMF approach’s verification strategy for 
systems, whose entire model is too large for MC, is to first 
verify the property in question (p) over each individual 
component individually. Next, p is verified over unique 
component combinations of 2,3,4.. . that are built up until 
no unique component combinations, whose state space 
may be model checked remain. During this combination 
and verification process, the relationships between the 
combinations are preserved such that for two arbitrary 
combinations x and y where x is a subset of y and the 
cardinality of x equals the cardinality of y minus 1, x will 
be considered the child of y in a tree structure of model 
checked model combinations. The result of maintaining 
these relationships is the generation of a tree of verified 
model component combinations (MCCs) with multiple 
root nodes. This tree is referred to as the Model 
Component Combination Tree (MCCT) The tree’s leaf 
nodes consist of single verified components, the parents of 
leaf nodes consist of a combination of 2 components and 

their parents consist of a combination of 3 components 
etc.. . 

At some threshold, determined by the amount of 
available memory present on the verification-computing 
platform, the state space of MCCs becomes too large for 
state of the art MC. The combinations beyond this 
threshold may be systematically computed but not model 
checked and is referred to as the implicit portion of the 
MCCT. The portion of the MCCs that can be verified via 
MC is referred to as the explicit or verified portion of the 
MCCT. 

A root node in the verified portion of the MCCT is 
implicitly connected to parents that represent MCCs 
whose state space size prohibits direct model checking 
due to memory constraints. The only exception to this 
assumption is when the state space of the entire system 
model is small enough to be model checked on the 
platform in a traditional way. However, the FMF approach 
offers benefits to modeling beyond MC state space 
explosion and can handle verification of this case as a 
trivial case where there will exist only one root node 
which represents the entire system and produces the 
traditional MC result over the entire system. 

The implicit parent of an explicit root node follows 
the same relationship rules that explicit nodes follow with 
regard to makeup and cardinality. (See this section above) 
An explicit “root” node is a subset of its implicit parent 
and contains exactly one less model component in its 
combination. Additionally each parent (implicit and 
explicit) has a number of children equal to the number of 
components in its combination. Thus, the entire implicit 
portion of the MCCT can be systematically generated and 
probabilistic verification statements made. (See Following 
Sections) 

In addition to supporting the FMFs compositional 
verification approach the MCCT allows for partial re- 
verification in light of system model changes. As the 
system is evolves, related model components are updated 
to reflect changes. The modular style of modeling in 
components results in a localization of the effects of 
updating a model component. Since the relationships 
between components and MCCs and past verification 
results of model components and MCCs are maintained, 
only the modified component and MCCs in which it 
participates need be re-verified. This represents a 
significant savings in terms of computational efficiency 
during subsequent (re-) verification executions. 

3.1. Propagation of Verification Results 

Each node (MCC) in the MCCT is a vehicle for 
retention of knowledge pertaining to the verification of the 



MCC represented therein. Each node carries two primary 
pieces of knowledge directly pertaining to verification. 
0 A verification value ranging from 0 to 2 that 

describes whether the property in question holds over 
the associated MCC. 
A confidence rating ranges from 0 to 1 that describes 
the probability that the verification value produced is 
correct. 

3.1.1. Verification Values 

A verification value of 0 indicates that the property 
decidedly does not hold. In terms of network security 
properties for software, a property violation represents the 
discovery of a network security vulnerability. The 
indication as the verification value progresses from 0 
towards 1 is that the predictability of the property not 
holding is diminishing towards undecidability and is 
completely undecidable at a value of one. As the 
verification value moves from 1 to 2 the predictability that 
the property holds is increasing with a maximal 
predisposition that the property holds over the MCC when 
the verification value is 2. The verification value will 
always be 0 or 2 in the explicit or verified portion of the 
MCCT because the MCCs are model checkable and thus a 
definitive verification result is obtained for that MCC. As 
verification values are derived for MCCs or nodes in the 
implicit portion of the MCCT the degree to which a 
property is believed to hold hot-hold over a given MCC 
begins to vary between 0 and 2 because no direct MC 
results are available. It bears noting here that the 
verification value in no way expresses confidence in the 
verification result expressed by the verification value. 

Thus, a Verification Value of 1 means that information 
across the various model components in a MCC is in 
conflict. A separate confidence rating is used to express 
the degree of confidence that the heuristics have correctly 
identified conflicts. (See Section 3.1.2) Verification 
Values in the implicit portion of the MCCT are calculated 
by averaging the Verification values of its children. (See 
Figure 1) In the explicit portion the MCCT, the 
verification values of a node is not heuristically derived 
from its children because the application of MC to the 
parent’s MCC is a definitive verification answer. As can 
be seen in Figure 1 it is possible to systematically 
propagate verification values over the full set of model 
components and thus the entire system model. 

Verification values assist in determining early 
lifecycle repairs and assurances for a system before 
software security vulnerabilities propagate and become 
exponentially more expensive to repair. In relation to the 
MCCT these activities are guided by trying to maximize 
and/or preserve Verification Values across the MCCT. 
For example, the small system depicted in Figure 1 
indicates that model component A (VV,) violates the 
property but the violation is mitigated individually by both 
model components B (VV,) and C (VVc). However, B 
(VVB) and C (VVc) taken together without benefit of any 
other model component violate the property the property. 
Further, even though together they violate the property in 
question in combination, individually each model 
component (B and C) satisfies it as well as correcting the 
property’s violation in A (VV,). Consider that this set of 
component represents the system at the early design or 
architecture stage of the development life cycle. Sever 
important questions can be prioritized and addressed. 
First, what interaction between the behaviors representi 

Implicit 

Explicit 

Figure 1: MCCT Verification Value Assignment and Propagation 



by model components B and C causes the property to be 
violated? Identification of this anomaly guides the 
network security profession or software developer toward 
the root cause of the vulnerability. Secondly, does 
components B and/or C mitigate the property violation 
found in component A because they are explicitly required 
to do so or is it coincidental? The documentation must 
either reflect this reliance on B and C in the form of new / 
existing requirements or action must be taken to isolate 
and repair the transient vulnerability. 

Similar steps may be taken to address the verification 
value of 0 in MCC VVcD. It becomes apparent from this 
very small example that verification values in the FMF 
approach generates numerous interrelated questions. 
However, this is considered a strength of the FMF 
approach because the questions and issues are brought out 
very early in the lifecycle for consideration. Further, as 
early decisions are made and captured, efficient localized 
updates of the system model are supported through the 
modular nature of the model components in a very agile 
manner. Then, issues affected by subsequent changes are 
automatically revisited though the required localized re- 
verification of affected combinations. This last feature of 
the approach is considered a failsafe and not a substitute 
for good practices such as documentation of decisions and 
emergent requirements. 

3.1.2. Confidence Ratings 

Confidence ratings for MCCs reflect the degree to 
which the heuristics of the FMF approach believe that the 
corresponding verification value correctly decides the 
result of the property verification over the MCC. It bears 
noting here that the confidence rating does not serve to 
improve decideability. Rather it serves to project the 
confidence in the decision once it is made. For example, 
when the verification value is at or very near 1 a high 
confidence rating means that the approach is very sure it 
the verification answer can’t be derived from the 
information available. Conversely, a low confidence 
rating when the verification value is (near) 1 means that 
insufficient information to decide the verification is 
available to decide the verification answer but existing 
information conflicts to a large degree. Reasoning about 
confidence ratings over verification values provides useful 
distinctions that may be used to guide future action. (See 
Table 1) 

4. Non-Uniform Component Resolution 

There are numerous instances in which one must view 
a system or set of systems at a very abstract level before 

Conf. Verif. 
Ratin 

0.69-0.00 

1.0 I 0.0 

0.69-0.0 

Description 

Highest confidence of No 
Property Violation 
Reasonably High Confidence of 
No Property Violation 
Questionable to no confidence 
of No Property Violation 
Highest confidence of Property 
Violation 
Reasonably high confidence of 
Property Violation 
Questionable to no confidence 
of Property Violation 
Reasonably High confidence 
Property (Non-) Violation 
cannot be Predicted 
Questionable to Low confidence 
Property (Non-) Violation 
cannot be Predicted. Non- 
Uniform Component Resolution 
may yield productive predictions 

Table 1: Conf. Rating and Verif. Value Descriptions 

examining one or more parts in greater detail. In the 
security arena one will view a large network system from 
an extremely high level where protocols must be 
understood and systems within it are arbitrary connected 
entities. When building a system that will interact with a 
network, the focus on that particular system entity 
becomes more detailed but the remainder of the network 
is still viewed very abstractly. The level of detail in which 
a component/entity is modeled and examined is referred to 
as its resolution throughout this paper. As specific 
interactions with other systems are defined the resolution 
of those systems necessarily becomes somewhat more 
detailed to deal with property verification issues. 

A system under development will be decomposed at a 
high level into various network aware and non-network 
aware components. Subsequently, components will be 
viewed with varying levels of resolution. Consider a 
system where network aware components such as OS and 
network functionality are interacting with non-network 
aware components such as routines for a printer. At this 
level there are network aware components on the 
computer system, components making up the network 
environment, and components making up the local printer 
routine. 

In the FMF approach, components are viewed not 
only as a matrix of combinable components created at a 
given level of detail (resolution), but also as a 3- 
dimentional space of models whereby component versions 
of different resolutions may be selected to manage state 
space explosion. Therefore, the tolerable state space may 
be spread across several components in varying amounts, 



which together from a state space that is feasible for MC. 
The approach of building model components, as opposed 
to a single model, allows localized modification and 
enhancement of model behavior and detail in order to 
examine subsets of the system at various non-uniform 
levels of resolution. 

The FMF component methodology provides the 
ability to make tradeoffs in resolution between 
components while maintaining the size of the state space 
within tolerable limits. The process of enhancing model 
components as more is learned about the system results in 
a series of component versions. When archived for later 
use, they provide a readily usable facility for producing 
component combinations with nonuniform resolutions. 
This is done by selecting the components for the 
combination and then specifying what version (resolution) 
of the component to use. 

The ability to investigate one component in detail 
(Cn.3 level) is facilitated by accepting lower levels of 
resolution (Cn level) in other components. Raising the 
resolution in one component increases the state space. 
Conversely, lowering resolution decreases the state space. 
Therefore, to gain maximum benefits from the available 
memory resources the resolution is increased until the 
threshold is almost reached. The analyst may then 
continue to make tradeoffs to probe various parts of the 
system in greater detail by increasing resolution on one 
component and decreasing it on others. 

It is important to note that in practice resolution 
levels in terms of contribution to state space size by a 
component is not necessarily uniform across components 
in a given level. The resolution levels only preserve order 
of size of a component. The generation of differing levels 
of resolution within a component is dictated by the 
circumstance of the natural process of updating model 
pieces as the system becomes more robust. 

Consider an example where a local print routine with 
no network capability is locally connected to an OS that 
must also interact with the Internet. Upon initial 
examination the printer routine would not appear to have 
to concern itself with security issues. To gain a higher 
confidence than this is the case the components within 
each system (Network, OS, and Print Routine) must be 
examined at a higher resolution. Examination of all 
components at a high level of resolution may be an 
infeasible task for MC with reasonable memory 
constraints. Thus a process is undertaken to gradually 
increase the “resolution” on the OS and the print routine 
while lower the “resolution” on the network and print 
routine’s model components. 

While printer components like CPI, do not directly 
interact with the network it may now be possible for them 
to interact with otherwise secure system components in a 

manner that renders them unsecured. An attack similar to 
this scenario above has been seen before. The attack 
managed to exploit interactions between system 
components to send a message to the print routine with 
additional data embedded in it. At a higher level it appears 
that a component in the OS is sending a routine message 
to a non-networked printer - a harmless interaction. Thus, 
the message is not scrutinized by the OS because it is a 
non-network aware activity. Consequently, the message is 
allowed to proceed to a seemingly noncritical area (the 
non-networked printer). However, because the print 
routine did not address network security concerns, it failed 
to identify that its normal responses back to the computer 
system were actually giving an unauthorized outside party 
root access to the system. From there the attacker had 
access to the computer and potentially the entire network. 

5. Other Verification Systems 

In the network security arena, an integrated approach 
that includes the FMF as a model-based verification 
element, for assessing security vulnerabilities is being 
explored. The other parts of the Security Assessment 
Instrument are PBT and the VMatrix. PBT is an approach 
that allows the analyst to systematically test an 
implementation. The Vmatrix, examines vulnerabilities, 
exposures and the methods used to exploit them. 
Vulnerabilities and exposures are listed along with their 
Common Vulnerabilities and Exposures (CVE) listing. [2] 
The individual parts of the Security Assessment 
Instrument can be used separately or in combination (See 
Figure 2) to provide the additional benefits. 

Figure 2: Technology Integration 



6. Conclusion 8. References 

Reducing the number of vulnerabilities in software 
systems is critical in computer systems that perform safety 
critical functions andor make use of network 
connectivity. The use of formal approaches such as MC 
enhances the ability of developers and analysts to discover 
vulnerabilities arising through unsafe interactions between 
systems and/or otherwise safe software components. The 
FMF approach provides the benefits derived from MC 
while mitigating limitations posed by system size and 
complexity as well as requirements and design volatility 
during the early lifecycle phases. The FMF attempts to 
capitalize on the benefits of existing technologies in a 
manner that maximizes usability and minimizes 
duplication of effort between approaches. 

Integrating software security and safety into existing 
and emerging practices is critical for developing high 
quality software. The Flexible Modeling Framework 
(FMF) offers a formal approach achieving such 
integration throughout the software development and 
maintenance life cycles. The approach seeks to maximize 
these benefits by attempting to integrate with, as opposed 
to replacing, existing verification technologies. 
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