
,

Integrating A Flexible Modeling Framework (FMF) with the Network Security
Assessment Instrument to Reduce Software Security Risk

David P. Gilliam and John D. Powell
Jet Propulsion Laboratory, Califomia Institute of Technology

David. Gilliam@jpl.nasa.gov, John. Powell @jpl.nasa.gov

Abstract

The network security assessment instrument is a
comprehensive set of tools that can be used individually
or collectively to ensure the security of network aware
software applications and systems. Using the various
tools collectively provide a distinct advantage for assuring
the security of software and systems. Each tool’s resulting
output provides feedback into the other tools. Thus, more
comprehensive assessment results are attained through the
leverage each tool provides to the other when they are
employed in concert.

Previous portions of this work were presented at the
IEEE Wet Ice 2000 and 2001 Workshops and are printed
in those proceedings.

This paper presents a portion of an overall research
project on the generation of the network security
assessment instrument to aid developers in assessing and
assuring the security of software in the development and
maintenance lifecycles. This portion, the Flexible
Modeling Framework (FMF), focuses on modeling
requirements and early lifecycle designs to discover
vulnerabilities that result from interaction between system
components that are either under development in a new
system or proposed as additions to an existing system.
There are early indications that this new approach, the
Flexible Modeling Framework (FMF), has promise in the
areas of network security as well as other critical areas
such as system safety. Information about the overall
research effort regarding network security is available at
httd/securitv. iul.nasa.gov/rssr.

1. Introduction

The National Aeronautics and Space Administration
(NASA) has tens of thousands of networked computer
systems and applications. Software Security is a major
concern due to the risk to both controlled and non-
controlled systems from potential lost or corrupted data,
theft of information, and unavailability of systems,

especially mission critical systems. The cost to NASA if
mission critical systems were compromised, would be
enormous if these systems were brought down or
erroneous data sent to a spacecraft. This research
examines formal verification of IT security of network
aware software and systems through the creation of a
security assessment instrument for the software
development and maintenance life cycle. [1,2,3,4,5,6] The
network security assessment instrument is composed of 5
parts:

1. A Vulnerability Matrix
2.
3.
4.
5.
The vulnerability contains vulnerability descriptions

and the code used to exploit them. The SATs are a
collection of tools available to test for potential
weaknesses of software code. The PBT tool performs
formal verification of properties at the code level. Like
the PBT tool, the FMF formally verifies properties over
the system. However, the FMF performs this action at the
abstract level when code may or may not yet exist. The
SSC will provide software code developers with another
instrument for writing secure code for network aware
applications. An ongoing effort is underway with the
Multi-Mission Encryption Communication System
(MECS) to pilot the usage of this security assessment
instrument.

Additional Security Assessment Tools (SATs)
A Property Based Testing (PBT) Tool, and
A Flexible Modeling Framework (FMF)
A Software Security Checklist (SSC)

2. The Flexible Modeling Framework (FMF)

An innovative verification approach, which employs
model checking as its core technology, is offered as a
means to bring software security issues under formal
control early in the life cycle. [1,2,3,4,7,8,9] The Flexible
Modeling Framework (FMF) seeks to address the problem
of formal verification of larger systems by a divide and
conquer approach. First verifying a property over portions
of the system, then incrementally inferring the results over

mailto:Gilliam@jpl.nasa.gov
mailto:jpl.nasa.gov

larger subsets of the entire system. As such the FMF is a:
1) system for building models in a component based
manner to cope with system evolution over time and, 2) an
approach of compositional verification to delay the effects
of state space explosion. Thus allowing property
verification results of large and complex models to be
examined and extrapolated appropriately.

Modeling in a component-based manner involves the
building of a series of small models, which will later be
strategically combined for system verification purposes.
This correlates the modeling function with modern
software engineering and architecture practices whereby a
system is divided into major parts, and subsequently into
smaller detailed parts, and then integrated to build up a
software system. An initial series of simple components
can be built when few operational specifics are known
about the system. However, these components can be
combined and verified for consistency with properties of
interest such as software security properties.

The approach of compositional verification used in
the FMF seeks to verify properties over individual model
components and then over strategic combinations of these
components. The goals of this approach are to: 1) infer
verification results over systems that are otherwise too
large and complex for model checking from results of
strategic subsets combinations while minimizing false
reports of defects; 2) retain verification results from
individual components and component combinations to
increase the efficiency of subsequent verification attempts
in light of modifications to a component.

3. FMF Verification

The FMF approach’s verification strategy for
systems, whose entire model is too large for MC, is to first
verify the property in question (p) over each individual
component individually. Next, p is verified over unique
component combinations of 2,3,4.. . that are built up until
no unique component combinations, whose state space
may be model checked remain. During this combination
and verification process, the relationships between the
combinations are preserved such that for two arbitrary
combinations x and y where x is a subset of y and the
cardinality of x equals the cardinality of y minus 1, x will
be considered the child of y in a tree structure of model
checked model combinations. The result of maintaining
these relationships is the generation of a tree of verified
model component combinations (MCCs) with multiple
root nodes. This tree is referred to as the Model
Component Combination Tree (MCCT) The tree’s leaf
nodes consist of single verified components, the parents of
leaf nodes consist of a combination of 2 components and

their parents consist of a combination of 3 components
etc.. .

At some threshold, determined by the amount of
available memory present on the verification-computing
platform, the state space of MCCs becomes too large for
state of the art MC. The combinations beyond this
threshold may be systematically computed but not model
checked and is referred to as the implicit portion of the
MCCT. The portion of the MCCs that can be verified via
MC is referred to as the explicit or verified portion of the
MCCT.

A root node in the verified portion of the MCCT is
implicitly connected to parents that represent MCCs
whose state space size prohibits direct model checking
due to memory constraints. The only exception to this
assumption is when the state space of the entire system
model is small enough to be model checked on the
platform in a traditional way. However, the FMF approach
offers benefits to modeling beyond MC state space
explosion and can handle verification of this case as a
trivial case where there will exist only one root node
which represents the entire system and produces the
traditional MC result over the entire system.

The implicit parent of an explicit root node follows
the same relationship rules that explicit nodes follow with
regard to makeup and cardinality. (See this section above)
An explicit “root” node is a subset of its implicit parent
and contains exactly one less model component in its
combination. Additionally each parent (implicit and
explicit) has a number of children equal to the number of
components in its combination. Thus, the entire implicit
portion of the MCCT can be systematically generated and
probabilistic verification statements made. (See Following
Sections)

In addition to supporting the FMFs compositional
verification approach the MCCT allows for partial re-
verification in light of system model changes. As the
system is evolves, related model components are updated
to reflect changes. The modular style of modeling in
components results in a localization of the effects of
updating a model component. Since the relationships
between components and MCCs and past verification
results of model components and MCCs are maintained,
only the modified component and MCCs in which it
participates need be re-verified. This represents a
significant savings in terms of computational efficiency
during subsequent (re-) verification executions.

3.1. Propagation of Verification Results

Each node (MCC) in the MCCT is a vehicle for
retention of knowledge pertaining to the verification of the

MCC represented therein. Each node carries two primary
pieces of knowledge directly pertaining to verification.
0 A verification value ranging from 0 to 2 that

describes whether the property in question holds over
the associated MCC.
A confidence rating ranges from 0 to 1 that describes
the probability that the verification value produced is
correct.

3.1.1. Verification Values

A verification value of 0 indicates that the property
decidedly does not hold. In terms of network security
properties for software, a property violation represents the
discovery of a network security vulnerability. The
indication as the verification value progresses from 0
towards 1 is that the predictability of the property not
holding is diminishing towards undecidability and is
completely undecidable at a value of one. As the
verification value moves from 1 to 2 the predictability that
the property holds is increasing with a maximal
predisposition that the property holds over the MCC when
the verification value is 2. The verification value will
always be 0 or 2 in the explicit or verified portion of the
MCCT because the MCCs are model checkable and thus a
definitive verification result is obtained for that MCC. As
verification values are derived for MCCs or nodes in the
implicit portion of the MCCT the degree to which a
property is believed to hold hot-hold over a given MCC
begins to vary between 0 and 2 because no direct MC
results are available. It bears noting here that the
verification value in no way expresses confidence in the
verification result expressed by the verification value.

Thus, a Verification Value of 1 means that information
across the various model components in a MCC is in
conflict. A separate confidence rating is used to express
the degree of confidence that the heuristics have correctly
identified conflicts. (See Section 3.1.2) Verification
Values in the implicit portion of the MCCT are calculated
by averaging the Verification values of its children. (See
Figure 1) In the explicit portion the MCCT, the
verification values of a node is not heuristically derived
from its children because the application of MC to the
parent’s MCC is a definitive verification answer. As can
be seen in Figure 1 it is possible to systematically
propagate verification values over the full set of model
components and thus the entire system model.

Verification values assist in determining early
lifecycle repairs and assurances for a system before
software security vulnerabilities propagate and become
exponentially more expensive to repair. In relation to the
MCCT these activities are guided by trying to maximize
and/or preserve Verification Values across the MCCT.
For example, the small system depicted in Figure 1
indicates that model component A (VV,) violates the
property but the violation is mitigated individually by both
model components B (VV,) and C (VVc). However, B
(VVB) and C (VVc) taken together without benefit of any
other model component violate the property the property.
Further, even though together they violate the property in
question in combination, individually each model
component (B and C) satisfies it as well as correcting the
property’s violation in A (VV,). Consider that this set of
component represents the system at the early design or
architecture stage of the development life cycle. Sever
important questions can be prioritized and addressed.
First, what interaction between the behaviors representi

Implicit

Explicit

Figure 1: MCCT Verification Value Assignment and Propagation

by model components B and C causes the property to be
violated? Identification of this anomaly guides the
network security profession or software developer toward
the root cause of the vulnerability. Secondly, does
components B and/or C mitigate the property violation
found in component A because they are explicitly required
to do so or is it coincidental? The documentation must
either reflect this reliance on B and C in the form of new /
existing requirements or action must be taken to isolate
and repair the transient vulnerability.

Similar steps may be taken to address the verification
value of 0 in MCC VVcD. It becomes apparent from this
very small example that verification values in the FMF
approach generates numerous interrelated questions.
However, this is considered a strength of the FMF
approach because the questions and issues are brought out
very early in the lifecycle for consideration. Further, as
early decisions are made and captured, efficient localized
updates of the system model are supported through the
modular nature of the model components in a very agile
manner. Then, issues affected by subsequent changes are
automatically revisited though the required localized re-
verification of affected combinations. This last feature of
the approach is considered a failsafe and not a substitute
for good practices such as documentation of decisions and
emergent requirements.

3.1.2. Confidence Ratings

Confidence ratings for MCCs reflect the degree to
which the heuristics of the FMF approach believe that the
corresponding verification value correctly decides the
result of the property verification over the MCC. It bears
noting here that the confidence rating does not serve to
improve decideability. Rather it serves to project the
confidence in the decision once it is made. For example,
when the verification value is at or very near 1 a high
confidence rating means that the approach is very sure it
the verification answer can’t be derived from the
information available. Conversely, a low confidence
rating when the verification value is (near) 1 means that
insufficient information to decide the verification is
available to decide the verification answer but existing
information conflicts to a large degree. Reasoning about
confidence ratings over verification values provides useful
distinctions that may be used to guide future action. (See
Table 1)

4. Non-Uniform Component Resolution

There are numerous instances in which one must view
a system or set of systems at a very abstract level before

Conf. Verif.
Ratin

0.69-0.00

1.0 I 0.0

0.69-0.0

Description

Highest confidence of No
Property Violation
Reasonably High Confidence of
No Property Violation
Questionable to no confidence
of No Property Violation
Highest confidence of Property
Violation
Reasonably high confidence of
Property Violation
Questionable to no confidence
of Property Violation
Reasonably High confidence
Property (Non-) Violation
cannot be Predicted
Questionable to Low confidence
Property (Non-) Violation
cannot be Predicted. Non-
Uniform Component Resolution
may yield productive predictions

Table 1: Conf. Rating and Verif. Value Descriptions

examining one or more parts in greater detail. In the
security arena one will view a large network system from
an extremely high level where protocols must be
understood and systems within it are arbitrary connected
entities. When building a system that will interact with a
network, the focus on that particular system entity
becomes more detailed but the remainder of the network
is still viewed very abstractly. The level of detail in which
a component/entity is modeled and examined is referred to
as its resolution throughout this paper. As specific
interactions with other systems are defined the resolution
of those systems necessarily becomes somewhat more
detailed to deal with property verification issues.

A system under development will be decomposed at a
high level into various network aware and non-network
aware components. Subsequently, components will be
viewed with varying levels of resolution. Consider a
system where network aware components such as OS and
network functionality are interacting with non-network
aware components such as routines for a printer. At this
level there are network aware components on the
computer system, components making up the network
environment, and components making up the local printer
routine.

In the FMF approach, components are viewed not
only as a matrix of combinable components created at a
given level of detail (resolution), but also as a 3-
dimentional space of models whereby component versions
of different resolutions may be selected to manage state
space explosion. Therefore, the tolerable state space may
be spread across several components in varying amounts,

which together from a state space that is feasible for MC.
The approach of building model components, as opposed
to a single model, allows localized modification and
enhancement of model behavior and detail in order to
examine subsets of the system at various non-uniform
levels of resolution.

The FMF component methodology provides the
ability to make tradeoffs in resolution between
components while maintaining the size of the state space
within tolerable limits. The process of enhancing model
components as more is learned about the system results in
a series of component versions. When archived for later
use, they provide a readily usable facility for producing
component combinations with nonuniform resolutions.
This is done by selecting the components for the
combination and then specifying what version (resolution)
of the component to use.

The ability to investigate one component in detail
(Cn.3 level) is facilitated by accepting lower levels of
resolution (Cn level) in other components. Raising the
resolution in one component increases the state space.
Conversely, lowering resolution decreases the state space.
Therefore, to gain maximum benefits from the available
memory resources the resolution is increased until the
threshold is almost reached. The analyst may then
continue to make tradeoffs to probe various parts of the
system in greater detail by increasing resolution on one
component and decreasing it on others.

It is important to note that in practice resolution
levels in terms of contribution to state space size by a
component is not necessarily uniform across components
in a given level. The resolution levels only preserve order
of size of a component. The generation of differing levels
of resolution within a component is dictated by the
circumstance of the natural process of updating model
pieces as the system becomes more robust.

Consider an example where a local print routine with
no network capability is locally connected to an OS that
must also interact with the Internet. Upon initial
examination the printer routine would not appear to have
to concern itself with security issues. To gain a higher
confidence than this is the case the components within
each system (Network, OS, and Print Routine) must be
examined at a higher resolution. Examination of all
components at a high level of resolution may be an
infeasible task for MC with reasonable memory
constraints. Thus a process is undertaken to gradually
increase the “resolution” on the OS and the print routine
while lower the “resolution” on the network and print
routine’s model components.

While printer components like CPI, do not directly
interact with the network it may now be possible for them
to interact with otherwise secure system components in a

manner that renders them unsecured. An attack similar to
this scenario above has been seen before. The attack
managed to exploit interactions between system
components to send a message to the print routine with
additional data embedded in it. At a higher level it appears
that a component in the OS is sending a routine message
to a non-networked printer - a harmless interaction. Thus,
the message is not scrutinized by the OS because it is a
non-network aware activity. Consequently, the message is
allowed to proceed to a seemingly noncritical area (the
non-networked printer). However, because the print
routine did not address network security concerns, it failed
to identify that its normal responses back to the computer
system were actually giving an unauthorized outside party
root access to the system. From there the attacker had
access to the computer and potentially the entire network.

5. Other Verification Systems

In the network security arena, an integrated approach
that includes the FMF as a model-based verification
element, for assessing security vulnerabilities is being
explored. The other parts of the Security Assessment
Instrument are PBT and the VMatrix. PBT is an approach
that allows the analyst to systematically test an
implementation. The Vmatrix, examines vulnerabilities,
exposures and the methods used to exploit them.
Vulnerabilities and exposures are listed along with their
Common Vulnerabilities and Exposures (CVE) listing. [2]
The individual parts of the Security Assessment
Instrument can be used separately or in combination (See
Figure 2) to provide the additional benefits.

Figure 2: Technology Integration

6. Conclusion 8. References

Reducing the number of vulnerabilities in software
systems is critical in computer systems that perform safety
critical functions andor make use of network
connectivity. The use of formal approaches such as MC
enhances the ability of developers and analysts to discover
vulnerabilities arising through unsafe interactions between
systems and/or otherwise safe software components. The
FMF approach provides the benefits derived from MC
while mitigating limitations posed by system size and
complexity as well as requirements and design volatility
during the early lifecycle phases. The FMF attempts to
capitalize on the benefits of existing technologies in a
manner that maximizes usability and minimizes
duplication of effort between approaches.

Integrating software security and safety into existing
and emerging practices is critical for developing high
quality software. The Flexible Modeling Framework
(FMF) offers a formal approach achieving such
integration throughout the software development and
maintenance life cycles. The approach seeks to maximize
these benefits by attempting to integrate with, as opposed
to replacing, existing verification technologies.

7. Acknowledgements

The research described in this paper is being carried
out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National
Aeronautics and Space Administration, and the University
of California at Davis under a subcontract with the Jet
Propulsion Laboratory, California Institute of Technology

[11 D. Gilliam, J. Kelly, M. Bishop, "Reducing Software
Security Risk Through an Integrated Approach," Proc. of
the Ninth IEEE Intemational Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(June, 2000), Gaithersburg, MD, pp.141-146.
[2] G. Fink, M. Bishop, "Property Based Testing: A New
Approach to Testing for Assurance," ACM SIGSOFT
Software Engineering Notes 22(4) (July 1997).
[3] M. Bishop, "Vulnerabilities Analysis," Proceedings of the
Recent Advances in Intrusion Detection (Sep. 1999).
[4] J. Dodson, "Specification and Classification of
Generic Security Flaws for the Tester's Assistant
Library," M.S. Thesis, Department of Computer Science,
University of California at Davis, Davis CA (June 1996).
[5] D. Gilliam, J. Kelly, J. Powell, M. Bishop,
"Development of a Software Security Assessment
Instrument to Reduce Software Security Risk" Proc. of
the Tenth IEEE Intemational Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, Boston, MA, pp 144-149.
[6] D. Gilliam, J. Powell, J. Kelly, M. Bishop, "Reducing
Software Security Risk Through an Integrated Approach", IEEE
Goddard 26th Annual Software Engineering Workshop
[7] W. Wen and F Mizoguchi. Model checking Security
Protocols: A Case Study Using SPIN, IMC Technical
Report, November, 1998.
[8] G. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall 1990; ISBN: 0135399254.
[9] J. R. Callahan, S. M. Easterbrook and T. L.
Montgomery, "Generating Test Oracles via Model
Checking," NASWVU Software Research Lab,
Fairmont, WV, Technical Report # NASA-IVV-98-015,
1998.

