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Geostrophic Balance with a full 

Coriolis Force: Implications for low 
Latitude Studies. 
M. de la Torre Jua'rez 

Jet Propulsion Laboratory/California Institute of Technology 

Abstract: In its standard form, geostrophic balance uses a partial representation of the Coriolis force. The 

resulting formulation has a singularity at the equator, and violates mass and momentum conservation. When the 

horizontal projection of the planetary rotation vector is considered, the singularity at the equator disappears, 

continuity can be preserved, and quasigeostrophy can be formulated at planetary scale. At the same time, the 

predicted geostrophic winds can differ significantly from the standard approach. Similarities and differences 

between both approaches to wind diagnostics are shown in an application example. 

(Acknowledgement: The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National 

Aeronautics and Space Administration.) 
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Partial and full Coriolis force 

l-T--- 1 

B Hydrostatic: (Vp + pg) 1 e,  

Singular at the Equator: 

1 2Qk x vg = -D + g 1 
P 

B Non-hydrostatic: (Vp + pg) 1_ k. 
(de Verdiere & Schopp 1994). 
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Partial and full Coriolis force 

# Hydrostatic: (Vp + pg) 1 e,  

Singular at the Equator: 

1 20k x vg = -B + g 1 
P 

# Non-hydrostatic: (Vp + pg) _L k. 

Non-singular and 3-dimensional 
v = k x + vzk (Veronis 1968) 
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Partial and full Coriolis force 

f e , F l ,  j- = 2 ~ s i n ~  

* Hydrostatic: (Vp + pg) _L e,  

S Singular at the Equator 

Divergent in incompressible and 
compressible flows. Pedlosky 2% 

Vertical velocity obtained from 
divergence in diagnostics. 

V '  (PV,,) = - u c O s X  r sin X # 0 

I 2Stk x vg = -Q + g 1 
P 

Non-hydrostatic: ( V p  + pg) _L k. 

Non-singular and 3-dimensional 
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Partial and full Coriolis force 

~ 

Hydrostatic: (Vp + p g )  I_ e,  

* Singular at the Equator 

Divergent in incompressible and 
compressible flows. Pedlosky 2.9~ 

Vertical velocity obtained from 
divergence in diagnostics. 

V ( p v , , )  = - v c O s X  r sin X # 0 

Non-hydrostatic: (Vp + p g )  I_ k. 

Non-singular and 3-dimensional 

Non-divergent in incompressible 
flows and under constraints in 
compressible flows. (de la Torre et al. 

2002) 

= o  = g-- d ( P V . 2 )  d p  cos x + 2a 
dZ e ax 
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Partial and full Coriolis force 

.O Hydrostatic: (Vp + pg) 1. e,  

.O Singular at the Equator: 

.O Divergent in incompressible and 
compressible flows. Vertical 
velocity obtained from 
divergence in diagnostics. 

.O Singular 2-dimensional thermal 
winds: 

1 2Qk x vg = - 5 9  P + g 1 
Non-hydrostatic: (Vp + pg) 1. k. 

Non-singular and 3-dimensional 

Non-divergent in incompressible 
flows and for zonal density in 
anelastic flows. 
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Partial and full Coriolis force 

~ ~ ~~ 

1) Hydrostatic: (Vp + pg) 1 e,  

1) Singular at the Equator: 

a Divergent in incompressible and 
compressible flows. Vertical 
velocity obtained from 
divergence in diagnostics. 

1) Singular 2-dimensional thermal 
winds 

1) Angular momentum violation. 

7 
S Non-hydrostatic: (Vp + pg) 1 k. 

S Non-singular and 3-dimensional 

Non-divergent in incompressible 
flows and for zonal density in 
anelastic flows. 

1) 3-dimensional non-singular ther- 
mal winds 
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Partial and full Coriolis force 

Hydrostatic: (Vp + pg) 1 e,  

Singular at the Equator: 

Divergent in incompressible and 
compressible flows. Vertical 
velocity obtained from 
divergence in diagnostics. 

Singular 2-dimensional thermal 
winds 

Angular momentum violation. 

a 
a 
s 

a 

s 

Non-hydrostatic: (Vp + pg) 1 k. 

Non-singular and 3-dimensional 

Non-divergent in incompressible 
flows and for zonal density in 
anelastic flows. 

3-dimensional non-singular 
thermal winds 

Angular momentum conservation 
(White & Bromley 1995). 



Partial and full Coriolis force 

am 

am 
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am 
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Hydrostatic: (Vp + pg) 1 e, 

Singular at the Equator: 

Divergent in incompressible and 
compressible flows. Vertical 
velocity obtained from 
divergence in diagnostics. 

Singular 2-dimensional thermal 
winds 

Angular momentum violation. 

Ertel’s potential vorticity 
conservation only on f-plane 

Non-hydrostatic: (Vp + pg) I_ k. 

a. Non-singular and 3-dimensional 

Non-divergent in incompressible 
flows and for zonal density in 
anelastic flows. 

thermal winds 
J) 3-dimensional non-singular 

a. Angular momentum conservation 



Ertel's Potential vorticity conservation 

F V  x ( 2 0  x v) = 20(V ' v) - v(V ' 2 0 )  + (v ' o)20 - ( 2 0  V)v, 
Absolute vorticity: wa = w + 2 0  1 

V p x V p  V x F  
Continuity + (s> - ( y  V) v = P3 +p. 

For any scalar field A: ( y  V) $$ = 

If the dot product of VX is taken with the vorticity equation, and if q = x. 
- dVX + [ ( y  V) VI ' VX. 

P d t  
dX . 

VX*-&(y)=VX*[(**V) P v + vP;vP + "1, P which leads to 
- & ( ~ . V X ) = * . V ~ + V X * [ ~ + ~ ] .  P v P xv P 

Thus: if X is a conserved quantity for every fluid element (i.e.XP = 0), if the 
bulk forces are negligible or potential (i.e. F = -VV), and if either X is a 
function of p,  and p only, or the fluid is barotropic (i.e. p = p ( p ) ) ,  then the 
potential vorticity PV Q 
This proof is valid for both, incompressible and compressible flows. which 
is the form that we will use below. 
Incompressible case: X can be the density and p = 0. 

(* VX is a conserved quantity. 
P 1 

= O  1 d(wa OX) (j=- 
P d t  



Partial and full Coriolis force 
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Hydrostatic: (Bp + pg) 1 e,  

Singular at the Equator: 

Divergent in incompressible and 
compressible flows. Vertical 
velocity obtained from 
divergence in diagnostics. 

Singular 2-dimensional thermal 
winds 

Angular momentum violation. 

Ertel's potential vorticity 
conservation only on f-plane 

1 20k x vg = + g I P 

Non-hydrostatic: (Bp + pg) l- k. 

Non-singular and 3-dimensional 

Non-divergent in incompressible 
flows and for zonal density in 
anelastic flows. 

3-dimensional non-singular 
thermal winds 

Angular momentum conservation 

Erte 's potential vorticity conserva- 
tion 




