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Preface 

MDS addresses autonomous monitoring and control of 
physical systems 

MDS has a broad scope: 
A systems engineering process 
A matching software architecture of two dimensions: 

A state- and goal-based architecture for monitoring and control 
A component & connection architecture for software engineering 

Core framework software 
Iterative development process 

Opportunities for improving dependability exist in all 4 areas 
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Origins of MDS 

MDS conceived as a unified flight / ground / test architecture for 
unmanned space science missions 
Systems are high-risk due to complex interactions and tight coupling; 
space is an unforgiving environment 

INTERACTIONS 

P 
1 
n 
3 
0 
0 

You are here. 

From Normal Accidents: 
Living with High-Risk 
Technologies, by 
Charles Perrow, 1984. 
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MDS Problem Domain 

of physical systems 
Mobile robots (spacecraft, planetary rovers, 
lawn mowers, ...) 
Immobile robots (manufacturing robots, 
industrial process control, toasters, . . .) 
Vast sensor/actuator web: 
“The Edge” of the world-wide web 

Scope includes: 
Real-time control and estimation 
Deliberative planning and scheduling of goals 
Management of engineering and science data 
Infrequent data transport across links having huge round-trip delays 
Modeling of complex interactions 
Reactive control, including fault protection, at multiple time scales 
Management of many limited resources (power, memory, pointing, ...) 
Human operation/monitoring of autonomous agents 

DD/KM/KR 4 



MDS Approach & Scope 

Apply product line practice to: 
Exploit commonalities across 
Reduce cycle time and costs 

Improve reliability 

products 

Scope includes: 
Systems engineering analysis & design process 

State architecture 

Component architecture 

Core framework software 

0 Collaborative, iterative analysis & design & refinement captured in a structui 

States, goals, models, estimators, controllers, measurements, commands, . 

Components, interfaces, ports, connections, roles, configuration, rules, . . . 

zd form 

State variables, goal networks, time services, data catalog, logging, naming, units, ... 

Work packages, package promotion, daily builds, baselines, test cases, . . . 
Iterative build & test process 
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MDS Products 
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“Architecture Hoisting” 

Things that are “buried in the analysis’’ or “buried in the code” are 
hard to review, analyze, modify, and manage 
In many areas MDS makes things explicit and brings them out into 
the light of day. We call this “architecture hoisting”: 

Components communicate only via connections 
Architecture configuration is explicit and inspectable 
Units of measurement are explicit and enforced 
Initialization dependencies are explicit and enforced 
State timelines make estimated and planned states visible to all 
Operation based on explicit, unambiguous constraints on state & time 
Synchronization at component boundary is explicit and inspectable 
Physical interactions are explicitly represented in models 
Resources (power, etc) are managed as state allocations 

All this explicitness offers many opportunities for improving 
dependability through analysis and verification 
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JPL State-Based Architecture 
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State is Central 
All application-level functions of 
the MDS architecture involve the 
concept of state 

The state of a system at some 
time is a snapshot of all the 
“interesting” changeable features 
of the system 
A system model describes all the 
“interesting” features of how a 
system changes 

spacecraft, its environment, and 
other actors in the environment 
(e.g. ground stations) with which it 

The system includes the I 

interacts in an “interesting” way 

The essence of the MDS state- 
based architecture is to place the 
explicit management of state at 
the center of all system activities I 

DDIKMIKR 

“State Flower ”, Robert Rasmussen, 1999. 
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State Knowledge 
Everything You Need to Know 

Dynamics 

Environment 

Device status 

Parameters 

Vehicle position & attitude, gimbal angles, wheel rotation, . . . 

Ephemeris, light level, atmospheric profiles, terrain, . . . 

Configuration, temperature, operating modes, failure modes, . . . 

Mass properties, scale factors, biases, alignments, noise levels, . . . 
Resources 

Power & energy, propellant, data storage, 
Data product collections 

Science data, measurement sets, . . . 
Data management & transport policies 

Compression/deletion, transport priority, . . 
Externally controlled factors 

Space link schedule & configuration, ... 
... and so on 

bandwidtl 
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State Timelines 

State timelines maintain the value or set of possible values 
(e.g., a range) of a state variable as a function of time 
Thev caDture both knowledae and intent about state 

i a continuous state time 

a discrete state time 

DD/KM/KR 14 
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State Timelines 

State timelines maintain the value or set of possible values 
(e.g., a range) of a state variable as a function of time 
Thev caDture both knowledae and intent about state 

i *. 

Planned states 1-J 
e 

e 

a continuous state 

a discrete state time 
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State Control 
Closing the Loop 

Operators express their intent in the form of goals 
Goals declare what should happen, not how 
Goals specify constraints on state and constraints on time 

Elaboration may be conditional, in order to react to present circumstances 
Coordination of activities is accomplished by scheduling 
Conflicts are resolved, with priority as final arbiter 

Knowledge of all states is maintained, as required to achieve goals 
Knowledge is compared to goal constraints to test for compliance 

High level goals are elaborated recursively into lower level goals 

Corrective action is applied, as required to achieve goals 
Alternate methods of achievement 
may be applied at any level 
Unachievable goals (and their elaborations) 
are dropped individually without sacrificing others 

Supports fault tolerance, 
critical activities, in situ autonomy, 
opportunistic science, and more 

17 DD/KM/KR 
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Resolving Conflicts 

Example: three goals on the same state 

Goal I 

Goal 2 

Goal 3 

The constraint 1 
Crosshatched areas are 
outside goal constraints q- The time interval 

I 

+ flexible start -b 

t 
Goals 7 and 2 overlap, so 

they’re compatible, as is \ Goal 3 is incompatible with Goal 2, 
but it can wait 

DD/KM/KR 
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State Timelines 

State timelines maintain the value or set of possible values 
(e.g., a range) of a state variable as a function of time 
Thev caDture both knowledae and intent about state 

*- 
(intent) 

b . - 
b 

I a continuous state time 

a discrete state time 

DD/KM/KR 20 



I i me1 i ne txecu t I on 

Goals are accepted if successfully placed on the timeline 
for the goal state variable 
Goals are frozen and acted upon when they appear on the timeline 
in the immediate future 
Goals are acted upon by achievers assigned to each state variable 
Elaborators monitor execution and adapt plans, as necessary 

Intent 
... given the 
present goals . . . 

... and given the 
present state, ... 

... achieve the goals. 

Knowledge 
7 

Time 
DD/KM/KR 21 



Putting It Together 
Elaborators, scheduling, . . . 

onstraint Network GoaVeven t-d riven __- - - - -_  
Planning and constraint solving 
Analogous to sequencing, mode 
and configuration control, fault 
responses 

Ac h ieve rs, DM/DT, 
Provide system behaviors 
Managed via goals and temporal constraints 
Fairly conventional real-time monitoring and control processes 

DD/KM/KR 22 



Component-Based Architecture 

0 

0 

0 

0 

First class types 
and instances 

Components, 
connectors, 
i n t e rfa ces 

Explicit interface 
ports 

Describe 
semantics of 
interface use 

Type safety 

Role safety 
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Benefits: Development & Testing 

Complex interactions understood at mission, system and component 
levels 
State decomposition facilitates tracking of system scalability 
Domain knowledge expressed explicitly as models 
Component architecture facilitates measures of responsiveness 
Architecture requires state be determined honestly from the evidence 
Architecture provides a mechanism for identifying the range and impact 
of faults 
Architecture authorizes and monitors all resource usage 
Uniform architecture facilitates cost tracking associated with system 
complexity and system reconfiguration. 
Cost models based on objective development data facilitate estimation 
of fau I t-related development. 
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Benefits: Safer Software 
0 

0 

0 

0 

I n itial ization/fi nal ization dependencies explicitly rep resented 
Dependency order enforced 
Automatic detection of circular dependencies 

Software interfaces and interactions elevated to first-class design 
elements 

Component approach facilitates use of advanced verification techniques 

Ru n-ti me component manager enforces arch i tectu ral rules reg a rd i ng 
instantiation of components and valid connections 

Eliminates ‘hidden’ interactions that cause hard-to-find problems 

Detect synchronization errors that cause deadlocks and data races 
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Benefits: Verification by Design 

Goals specify explicit constraints on state and time that are continually 
monitored, so deviations from expected behavior are immediately 
reported. 
Errors in units of measurement detected through SI units package 
Component manager enforces architectural rules about legal connections 
The initialization/finalization package reports circular dependencies and 
improperly held resources 
Unified state architecture supports direct comparison between simulated 
state and estimated state 
Separation of models from reusable algorithms makes validation of 
m iss io n-s peci f i c items si m p le r 
‘Smart pointers’ eliminate problems of memory leaks and dangling 
pointers 
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Benefits: Mission Operations 

Operation based on what (constraints on state) rather than how 
(command sequences) 
Operators can migrate capability and responsibility from ground to flight 
system to simplify operations and reduce communication needs 
Models express key functional relations among system states, command 
effects, and observed measurements 
Disciplined architecture provides uniform fault-metric mechanisms 
Fault sources are explicitly captured in goal-failure trees 
Fault response is explicitly modeled as goal elaborations 
Uniform data collection mechanism facilitates run-time monitoring and 
metrics associated with adaptivity and diagnosability 

DD/KM/KR 27 



MDS Framework Packages 

nowledge 

-state value 

I I I 

Goal Achiever: 
-estimator, controller 
-Measurement, command 

I I 

Component 
Visualization Scheduler 

I I I  I 

-data product -session, request 

OS Services 

I 

Event Log File I Facility 1 I !::i:zs I 1 :rzces I I Protocol 

C++ Standard I Library 

Exception I Classes I 
Sequential 1 Estimation 

Unit Testing 
Package 

Graph 
Library 

Real Time 
Operating System 
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The MDS Common Model 

. . . . 

4 . . . 
m . . I 

The MDS Framework is the collection of most 
core classes within the MDS architecture 

Developed and maintained exclusively by MDS 
Uniform (except for versioning) across MDS 
adaptations 

Each project does an Adaptation of the 
framework 

Captures project requirements and scenarios 
Extends framework classes to address 
functions and configurations specific to the 
project 
Reusable extensions are generalized (if 
necessary) and moved to the framework 

Several Deployments of the adaptation are 

These are the executable configurations to be 
used in various settings (test beds, flight, 
ground, etc.) 

defined 
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Reuse Among Projects 

I 

.. . . . . . . . . . . . . ., 

c. Each project uses the same 
framework, except that later 
projects will adapt later versions 

Can continue to track framework 
evolution up to some freeze point 
Updates to frozen version are 
confined to that project 

Though mainline framework 
development may decide to make 
some of the same updates 

Projects can adapt from one 

A similar track-then-freeze cor 
ation management process 
uld be necessary 

ifig- 
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Summary 

M DS addresses.. . 
Architectures for both functional and software design interactions 
Unification and reuse across deployments and projects 
A wide range of technical issues from autonomous control to data 

The collaboration of systems and software engineering 
Processes, tools, and design rigor up to the challenge of a flight 

management 

program 

State and Component Architectures are the bedrock of our 
approach 

Each exploits a relatively small but powerful set of ideas 
The two architectures complement one another in a natural but far- 
reaching manner 
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