
Mission Data System

An end-to-en

Dan Dvorak, Kenny Meyer, Kirk Reinholtz
Jet Propulsion Laboratory

California Institute of Technology
1

Preface

MDS addresses autonomous monitoring and control of
physical systems

MDS has a broad scope:
A systems engineering process
A matching software architecture of two dimensions:

A state- and goal-based architecture for monitoring and control
A component & connection architecture for software engineering

Core framework software
Iterative development process

Opportunities for improving dependability exist in all 4 areas

DD/KM/KR 2

Origins of MDS

MDS conceived as a unified flight / ground / test architecture for
unmanned space science missions
Systems are high-risk due to complex interactions and tight coupling;
space is an unforgiving environment

INTERACTIONS

P
1
n
3
0
0

You are here.

From Normal Accidents:
Living with High-Risk
Technologies, by
Charles Perrow, 1984.

DD/KM/KR 3

MDS Problem Domain

of physical systems
Mobile robots (spacecraft, planetary rovers,
lawn mowers, ...)
Immobile robots (manufacturing robots,
industrial process control, toasters, . . .)
Vast sensor/actuator web:
“The Edge” of the world-wide web

Scope includes:
Real-time control and estimation
Deliberative planning and scheduling of goals
Management of engineering and science data
Infrequent data transport across links having huge round-trip delays
Modeling of complex interactions
Reactive control, including fault protection, at multiple time scales
Management of many limited resources (power, memory, pointing, ...)
Human operation/monitoring of autonomous agents

DD/KM/KR 4

MDS Approach & Scope

Apply product line practice to:
Exploit commonalities across
Reduce cycle time and costs

Improve reliability

products

Scope includes:
Systems engineering analysis & design process

State architecture

Component architecture

Core framework software

0 Collaborative, iterative analysis & design & refinement captured in a structui

States, goals, models, estimators, controllers, measurements, commands, .

Components, interfaces, ports, connections, roles, configuration, rules, . . .

zd form

State variables, goal networks, time services, data catalog, logging, naming, units, ...

Work packages, package promotion, daily builds, baselines, test cases, . . .
Iterative build & test process

DD/KM/KR 5

MDS Products

DDIKMIKR 6

0
)

S

Ii E S

0

a,
>
a,

m
-

-
 L

cn
F

m S

L

c
,

't:
a,
cn
m
n

0

.
I

0

Q

cn
S

0

.
I

c
,

ca
m

0

m 0
)

0

Q

-
 E

L

L

a,
0

n

cj
c
,

a,

.
I

cn
0

a,
.
I

S

m L
C

I

6

U

m
3

0

a,
z

0

m S

m m

c
,

C
I

.
I

L

c
,

a,

a,
m 5
C

I

Y

S

E E

0

0

0

L

c
,

r

n

-
 a, 3

r
c
 n

m m
C

I

L

cn
S

a,
>
a,
0

c
,

C
I

T

S

m
0

0

cn
S

.
I

I
 0)

rc
.
I

E
c
,

0

E

4=
0

F

'0

a,
cn
3

in

0

S

0

m 3
Q

S

r
c

.
I

c
,

-

.
I

E U S m S

0

m S

a,
cn
a,

a,

.
I

c
,

c
,

k

L

ti 3
E

0

4= S

C
I

E E a,
m

m S

c
,

0

S

S

r"
m

a,
s

I- m S

D

L

0

C
I

E

0

L

Y
-
c
,

-

.
I

3

n

0

S

0

0

a,
U

3

-
 L

c
,

C
I

0

Q

8
m

.
I

U

.
I

z c, m
m

 S

3

0

0
)

0

%

n

m Q

m 0 L

E

L

r
c

c
,

.
I

-

.
I

S

m
U

a,

L

cn
a,
U

~

0

a,
U

0

a,
-

a,
S

c
,

.
I

~

.
I

C
I

0

m a, L
n

m N

.
I

E

& CI a,

r
c

0

c
,

S

E E a,
m

m S

E

S

.-
0
)

U

a,
cn

Y

a,
G

I

m Q

3

C
I

*

t
)

a,
I

a,
ul
U

a,
-

r
.
I

0

a,
Q

.
I

cn
U

a,
m cn
c
,

C
I

m a,
n

cn

\

-

.
I

0

S

x

0

S

.
I

m
Y

L

0
)

a,
S

c
,

cn
3

0

S

ca cn
.
I
 0

.
I

r
c

0

r
c

O

.
I

>

cn
S

0

0

m S

a,
x

.
I

C
I

til c,

.
I

a,
0

3

0

L

.
I

C
I

.
I

cn
S

0

0

a,

.
I

.
I

c
,

Y

c
,

c
,

ca L
x

>r
LI:
c
,

S

S

ca
c
,

F

S

a,
Q

0

0

.
I
 0

.
I

z 0

U

S

a,
m 0
)

c
,

L

.
I

E

.
I

m
Y

Y

.
I

m
t:
a,
0

S

ia

a,
cn
S

m a, 5

-

c>

.
-

E

m
U

a,
cn
m
n
 I

0

U

S

0

m 0)

> m
z

.
I

C
I

.
I

0

k

cn
cn
a,
Q

L

3

0

c
,

E 8
L

L

a,
m
c
,

5

C
I

-
 3 m

L
L

-
 m 0

S

m r"
X

W

0

J

L!
1

“Architecture Hoisting”

Things that are “buried in the analysis’’ or “buried in the code” are
hard to review, analyze, modify, and manage
In many areas MDS makes things explicit and brings them out into
the light of day. We call this “architecture hoisting”:

Components communicate only via connections
Architecture configuration is explicit and inspectable
Units of measurement are explicit and enforced
Initialization dependencies are explicit and enforced
State timelines make estimated and planned states visible to all
Operation based on explicit, unambiguous constraints on state & time
Synchronization at component boundary is explicit and inspectable
Physical interactions are explicitly represented in models
Resources (power, etc) are managed as state allocations

All this explicitness offers many opportunities for improving
dependability through analysis and verification

DD/KM/KR a

2 H a n

a,

I:
t
 3
 S

I
1

c
,

5
1

S

p 4
 I I I I I I I

A

I I I I I I I I I I I I I

Q
,

B

s 3

tj at 0

.&

+&
k

1
',

\
I

\

I
i

\

-
.

I

\

\
I

\

\
I

\
I I

\ I

\ \
- a

a
t

I I I I I

I

\
\

\ \ \
\

8,
\ \
- 3 s tj Q

,

cp
.&

I

I I I I I I

- cp 8
ri
iii

'
4

I I I !

A

A

4

I
I

I
I

I
I

I
I

I I I
I

I

1 I I I I
0

JPL State-Based Architecture

DDlKMlKR 11

State is Central
All application-level functions of
the MDS architecture involve the
concept of state

The state of a system at some
time is a snapshot of all the
“interesting” changeable features
of the system
A system model describes all the
“interesting” features of how a
system changes

spacecraft, its environment, and
other actors in the environment
(e.g. ground stations) with which it

The system includes the I

interacts in an “interesting” way

The essence of the MDS state-
based architecture is to place the
explicit management of state at
the center of all system activities I

DDIKMIKR

“State Flower ”, Robert Rasmussen, 1999.
12

State Knowledge
Everything You Need to Know

Dynamics

Environment

Device status

Parameters

Vehicle position & attitude, gimbal angles, wheel rotation, . . .

Ephemeris, light level, atmospheric profiles, terrain, . . .

Configuration, temperature, operating modes, failure modes, . . .

Mass properties, scale factors, biases, alignments, noise levels, . . .
Resources

Power & energy, propellant, data storage,
Data product collections

Science data, measurement sets, . . .
Data management & transport policies

Compression/deletion, transport priority, . .
Externally controlled factors

Space link schedule & configuration, ...
... and so on

bandwidtl

DD/KM/KR 13

State Timelines

State timelines maintain the value or set of possible values
(e.g., a range) of a state variable as a function of time
Thev caDture both knowledae and intent about state

i a continuous state time

a discrete state time

DD/KM/KR 14

& z 0
U

S

m

c
,

U

c

m u
)

E

a,
cn
)r
cn

c
,

cn
S

0

.
I

c
,

f! a, v
)

a,
m

U

a,
a,
> m

.-

C
I

.- 3

0

3

0

6

I

r
Y

a,
r

r
Y

0

S

o
m

*

3
E

n

cn

x

8 3
cn
03
S

3

3

c
,

*

A2
0

3

0

h

C
I

Y
-
0

8
Y

-
a,
c

c
,

Q
)

PI
= Q

)
c

r

0

S

Y

P
o

cn
S

0

m S

m Q

X

a,

.
I

c
,

-

n

n

0

C

C
I

.-
E

.- 3

0

s

a,
u
)

U

s 0 Y

L

E 3
Y

-
0

Q
)

> Q
)

z
 0
a

S

m 0 a,
S

0

L
n

a,
>

a,
3

0

I:
e

.
I

a,

0

S

x

O

h

0

S

a,
cn
cn
S

0

0

-
 3

Y
-

C
I

.
I

cn
n
 a,
S

0

3

0

>

0

a,
a

k

U

0

0

c
,

m
x

cn
3
.-

S

0

Y
 0,

Y

m
ai
1

cn
c

0

.- Y

.
I

‘“g

U

S

iF
:

S

a,
>

S

0

a
,
€

u
)

+
D

a,
m

U

a,
m

U

a,

1C.r
0

m
.
I

03
to L

6

0

0

c
,

S

m 0
a,

6

.- E-
c
,

r
1L
0

-
 m 0 0

.
I

>

a,
in
W

-

0

zz e
0

e
e

State Timelines

State timelines maintain the value or set of possible values
(e.g., a range) of a state variable as a function of time
Thev caDture both knowledae and intent about state

i *.

Planned states 1-J
e

e

a continuous state

a discrete state time

DD/KM/KR 16

State Control
Closing the Loop

Operators express their intent in the form of goals
Goals declare what should happen, not how
Goals specify constraints on state and constraints on time

Elaboration may be conditional, in order to react to present circumstances
Coordination of activities is accomplished by scheduling
Conflicts are resolved, with priority as final arbiter

Knowledge of all states is maintained, as required to achieve goals
Knowledge is compared to goal constraints to test for compliance

High level goals are elaborated recursively into lower level goals

Corrective action is applied, as required to achieve goals
Alternate methods of achievement
may be applied at any level
Unachievable goals (and their elaborations)
are dropped individually without sacrificing others

Supports fault tolerance,
critical activities, in situ autonomy,
opportunistic science, and more

17 DD/KM/KR

cn
S

m cn
S

0

0

C
I

.
I

L

c
,

-

cr
r
c

L

0

I I I I I I
.c

,
S

ca
.
I

.
I

m Q

m
I

L

.c.r
u
)

I

C
I

0

a,
S

r 0

0

m Q

5
S

E

a,
n

S

m

C
I

0

0

z

0

m a, cn
S

C

I

U

a,
m L

.-

U

a,
0

a,
S

S

0

0

O

S

0

0

a,
0

0

c
,

Y
-

.
I

C
I

-

-

a
 e

r
 cn S

a,
e
 0

a,

cn
S

0

5
c
,

.
I

L

~

0

I I I I
I I I I I I I
 I

a,
c
,

U

c

L

m m
s

g

i!
?

\ \ \ \ \

0
 =

E

(
3

Q

i=z
e

e

Resolving Conflicts

Example: three goals on the same state

Goal I

Goal 2

Goal 3

The constraint 1
Crosshatched areas are
outside goal constraints q- The time interval

I

+ flexible start -b

t
Goals 7 and 2 overlap, so

they’re compatible, as is \ Goal 3 is incompatible with Goal 2,
but it can wait

DD/KM/KR

Timer

19

State Timelines

State timelines maintain the value or set of possible values
(e.g., a range) of a state variable as a function of time
Thev caDture both knowledae and intent about state

*-
(intent)

b . -
b

I a continuous state time

a discrete state time

DD/KM/KR 20

I i me1 i ne txecu t I on

Goals are accepted if successfully placed on the timeline
for the goal state variable
Goals are frozen and acted upon when they appear on the timeline
in the immediate future
Goals are acted upon by achievers assigned to each state variable
Elaborators monitor execution and adapt plans, as necessary

Intent
... given the
present goals . . .

... and given the
present state, ...

... achieve the goals.

Knowledge
7

Time
DD/KM/KR 21

Putting It Together
Elaborators, scheduling, . . .

onstraint Network GoaVeven t-d riven __- - - - -_
Planning and constraint solving
Analogous to sequencing, mode
and configuration control, fault
responses

Ac h ieve rs, DM/DT,
Provide system behaviors
Managed via goals and temporal constraints
Fairly conventional real-time monitoring and control processes

DD/KM/KR 22

Component-Based Architecture

0

0

0

0

First class types
and instances

Components,
connectors,
i n t e rfa ces

Explicit interface
ports

Describe
semantics of
interface use

Type safety

Role safety

DD/KM/KR 23

Benefits: Development & Testing

Complex interactions understood at mission, system and component
levels
State decomposition facilitates tracking of system scalability
Domain knowledge expressed explicitly as models
Component architecture facilitates measures of responsiveness
Architecture requires state be determined honestly from the evidence
Architecture provides a mechanism for identifying the range and impact
of faults
Architecture authorizes and monitors all resource usage
Uniform architecture facilitates cost tracking associated with system
complexity and system reconfiguration.
Cost models based on objective development data facilitate estimation
of fau I t-related development.

DD/KM/KR 24

Benefits: Safer Software
0

0

0

0

I n itial ization/fi nal ization dependencies explicitly rep resented
Dependency order enforced
Automatic detection of circular dependencies

Software interfaces and interactions elevated to first-class design
elements

Component approach facilitates use of advanced verification techniques

Ru n-ti me component manager enforces arch i tectu ral rules reg a rd i ng
instantiation of components and valid connections

Eliminates ‘hidden’ interactions that cause hard-to-find problems

Detect synchronization errors that cause deadlocks and data races

DD/KM/KR 25

Benefits: Verification by Design

Goals specify explicit constraints on state and time that are continually
monitored, so deviations from expected behavior are immediately
reported.
Errors in units of measurement detected through SI units package
Component manager enforces architectural rules about legal connections
The initialization/finalization package reports circular dependencies and
improperly held resources
Unified state architecture supports direct comparison between simulated
state and estimated state
Separation of models from reusable algorithms makes validation of
m iss io n-s peci f i c items si m p le r
‘Smart pointers’ eliminate problems of memory leaks and dangling
pointers

DD/KM/KR 26

Benefits: Mission Operations

Operation based on what (constraints on state) rather than how
(command sequences)
Operators can migrate capability and responsibility from ground to flight
system to simplify operations and reduce communication needs
Models express key functional relations among system states, command
effects, and observed measurements
Disciplined architecture provides uniform fault-metric mechanisms
Fault sources are explicitly captured in goal-failure trees
Fault response is explicitly modeled as goal elaborations
Uniform data collection mechanism facilitates run-time monitoring and
metrics associated with adaptivity and diagnosability

DD/KM/KR 27

MDS Framework Packages

nowledge

-state value

I I I

Goal Achiever:
-estimator, controller
-Measurement, command

I I

Component
Visualization Scheduler

I I I I

-data product -session, request

OS Services

I

Event Log File I Facility 1 I !::i:zs I 1 :rzces I I Protocol

C++ Standard I Library

Exception I Classes I
Sequential 1 Estimation

Unit Testing
Package

Graph
Library

Real Time
Operating System

DD/KM/KR 28

The MDS Common Model

. . . .

4 . . .
m . . I

The MDS Framework is the collection of most
core classes within the MDS architecture

Developed and maintained exclusively by MDS
Uniform (except for versioning) across MDS
adaptations

Each project does an Adaptation of the
framework

Captures project requirements and scenarios
Extends framework classes to address
functions and configurations specific to the
project
Reusable extensions are generalized (if
necessary) and moved to the framework

Several Deployments of the adaptation are

These are the executable configurations to be
used in various settings (test beds, flight,
ground, etc.)

defined

DD/KM/KR 29

Reuse Among Projects

I

..,

c. Each project uses the same
framework, except that later
projects will adapt later versions

Can continue to track framework
evolution up to some freeze point
Updates to frozen version are
confined to that project

Though mainline framework
development may decide to make
some of the same updates

Projects can adapt from one

A similar track-then-freeze cor
ation management process
uld be necessary

ifig-

DD/KM/KR 30

Summary

M DS addresses.. .
Architectures for both functional and software design interactions
Unification and reuse across deployments and projects
A wide range of technical issues from autonomous control to data

The collaboration of systems and software engineering
Processes, tools, and design rigor up to the challenge of a flight

management

program

State and Component Architectures are the bedrock of our
approach

Each exploits a relatively small but powerful set of ideas
The two architectures complement one another in a natural but far-
reaching manner

DD/KM/KR 31

.

'y

E

w

