Dan Dvorak, Kenny Meyer, Kirk Reinholtz
Jet Propulsion Laboratory
California Institute of Technology

Mission Data System

4

JRL Preface

e MDS addresses autonomous monitoring and control of
physical systems

e MDS has a broad scope:
e A systems engineering process

¢ A matching software architecture of two dimensions:
e A state- and goal-based architecture for monitoring and control
¢ A component & connection architecture for software engineering
o Core framework software

e lIterative development process

e Opportunities for improving dependability exist in all 4 areas

DD/KM/KR

L Origins of MDS

e MDS conceived as a unified flight / ground / test architecture for
unmanned space science missions

e Systems are high-risk due to complex interactions and tight coupling;
space is an unforgiving environment

INTERACTIONS
Linear Complex

ou are here.

L

COUPLING

From Normal Accidents:
Living with High-Risk
Technologies, by
Charles Perrow, 1984.

Loose

DD/KM/KR 3

Qf MDS Problem Domain

e Autonomous monitoring and control
of physical systems

o Mobile robots (spacecraft, planetary rovers,
lawn mowers, ...)

e Immobile robots (manufacturing robots,
industrial process control, toasters, ...)

e Vast sensor/actuator web:
“The Edge” of the world-wide web

® Scope includes:
e Real-time control and estimation
e Deliberative planning and scheduling of goals
e Management of engineering and science data
¢ Infrequent data transport across links having huge round-trip delays
e Modeling of complex interactions
e Reactive control, including fault protection, at multiple time scales
o Management of many limited resources (power, memory, pointing, ...)

e Human operation/monitoring of autonomous agents
DD/KM/KR 4

4 MDS Approach & Scope

e Apply product line practice to:
o Exploit commonalities across products
¢ Reduce cycle time and costs

o [Improve reliability

® Scope includes:
e Systems engineering analysis & design process

¢ Collaborative, iterative analysis & design & refinement captured in a structured form
State architecture

e States, goals, models, estimators, controllers, measurements, commands, ...
Component architecture

o Components, interfaces, ports, connections, roles, configuration, rules, ...
Core framework software

o State variables, goal networks, time services, data catalog, logging, naming, units, ...
Iterative build & test process

o Work packages, package promotion, daily builds, baselines, test cases, ...

DD/KM/KR 5

e

MDS Products

DD/KM/KR

MDS customers will get...

2]

Unified flight, ground and test architecture
» Based on several broad organizing themes
Orderly systems engineering methodology

« Bridging the gaps from analysis to requirements to software design
to operations

Object-oriented design

« Comprised of classes, templates, patterns, test scenarios, and so
on, described in the Unified Modeling Language

Frameworks

 Core infrastructure and discipline-specific sets of classes,
algorithms, and models adaptable to a variety of missions

Processes, tools, and documentation

* Integrated development, test and simulation environments and
guidelines, monitoring, diagnosis and verification tools, adapters
guides, and so on

Examples

» Executable instantiations of frameworks that will serve as examples
for real applications

Reusable software
« An expanding legacy of code easily applied to successive missions

AP

DD/KM/KR

Architectural Themes

Formal representation and manipulation of state are central
State uncertainty is acknowledged and used in decision making
Goal-based operation specifies intent; simplifies operations
Express domain knowledge in models, not program logic
Closed-loop control for in situ reaction to events

Fault protection is integral part of design, not an add-on
Real-time resource management (for power, fuel, etc.)
Clean separation of state determination from control

Clean separation of data management from data transport
Navigation and attitude control built from a common base
Plan to migrate capability from ground to flight

Make interactions visible/analyzable at an architectural level

4 “Architecture Hoisting”

e Things that are “buried in the analysis” or “buried in the code” are
hard to review, analyze, modify, and manage

¢ In many areas MDS makes things explicit and brings them out into
the light of day. We call this “architecture hoisting:
e Components communicate only via connections
e Architecture configuration is explicit and inspectable
e Units of measurement are explicit and enforced
e Initialization dependencies are explicit and enforced
e State timelines make estimated and planned states visible to all
e Operation based on explicit, unambiguous constraints on state & time
e Synchronization at component boundary is explicit and inspectable
e Physical interactions are explicitly represented in models
e Resources (power, etc) are managed as state allocations

e All this explicitness offers many opportunities for improving
dependability through analysis and verification

DD/KM/KR 8

DD/KM/KR 9

Systems engineers follow a
disciplined "state analysis”,
asking & answering questions
such as these:

The state architecture
bridges the gap through a
shared set of architectural

What do you want to achieve?
Move rover to rock.
What's the state to be controlled?

Rover position relative to rock. --------

How do you know what that is?
Measure relative position with stereo
camera.
What does the stereo camera measure?

Distance to terrain features, light level,

camera power
(on/off), camera health.
How do you control light level?
Wait until the sun is up.
Where is sun relative to horizon?

DD/KM/KR

elements
--------- » Goal ------m--mmsmoseessoees)
-4------)» State Variable ------________ >
........ » Measurement IR
____,_———?
Measurement ---~~~
"""" > Model
,,,,, y
--------- » State Model -
Etc.

Software engineers build the
system by adapting a software
framework having the same
architectural elements

Goal ; .

Network Simulation

State Hardware || gequential

Knowledge Proxy Estimation

Measurement Data Graph

Package Catalog || Library

State Coordinate S| Units

Models Systems -
Naming

Time Linear Event

10

L State-Based Architecture

DD/KM/KR "

ﬁ State is Central

All application-level functions of
the MDS architecture involve the
concept of state

e The state of a system at some
time is a snapshot of all the
“interesting” changeable features
of the system

¢ A system model describes all the
“interesting” features of how a
system changes

e The system includes the
spacecraft, its environment, and
other actors in the environment
(e.g. ground stations) with which it
interacts in an “interesting” way

The essence of the MDS state-
based architecture is to place the
explicit management of state at
the center of all system activities

“State Flower”, Robert Rasmussen, 1999.
DD/KM/KR 12

g State Knowledge
e 4 Everything You Need to Know

e Dynamics
e Vehicle position & attitude, gimbal angles, wheel rotation, ...
e Environment
e Ephemeris, light level, atmospheric profiles, terrain, ...
® Device status
o Configuration, temperature, operating modes, failure modes, ...
e Parameters
o Mass properties, scale factors, biases, alignments, noise Ievels
e Resources —
e Power & energy, propellant, data storage, bandwidth, .. e
e Data product collections
e Science data, measurement sets, ...
e Data management & transport policies
o Compression/deletion, transport priority, ...
e Externally controlled factors (=)
e Space link schedule & configuration, ... e A

.. and so on R

DD/KM/KR 13

State Timelines

e State timelines maintain the value or set of possible values
(e.g., a range) of a state variable as a function of time

e They capture both knowledge and intent about state

2 paad

a discrete state time

DD/KM/KR 14

@’ State Determination

L Making Sense of the World

e One can act only on one’s knowledge of the system
o Knowledge is what you know, not how you know it
e Observations (e.g., measurements) are not knowledge

¢ Estimators find “good” explanations for observations and other
evidence, given a model of how things work

o Knowledge may be propagated into the future, given models and
plans

e All knowledge is uncertain ({ecommand)

¢ Judgment must be based both on what is known, Goais
and on how well it is known

e However, one can achieve
local consistency of knowledge

DD/KM/KR 15

- State Timelines

e State timelines maintain the value or set of possible values
(e.g., a range) of a state variable as a function of time

e They capture both knowledge and intent about state

Past (Now) Future Il

= »
T L
Ease R e s TR —

a continuous state time

O Knowlle ® 0 Care

a discrete state time

DD/KM/KR 16

State Control

Closing the Loop

e Operators express their intent in the form of goals
o Goals declare what should happen, not how
¢ Goals specify constraints on state and constraints on time

e High level goals are elaborated recursively into lower level goals
¢ Elaboration may be conditional, in order to react to present circumstances
¢ Coordination of activities is accomplished by scheduling
¢ Conflicts are resolved, with priority as final arbiter

e Knowledge of all states is maintained, as required to achieve goals
¢ Knowledge is compared to goal constraints to test for compliance

e Corrective action is applied, as required to achieve goals

e Alternate methods of achievement
may be applied at any level

]
¢ Unachievable goals (and their elaborations) ~ o %
are dropped individually without sacrificing others

e Supports fault tolerance,
critical activities, in situ autonomy,
opportunistic science, and more

Telecommand

DD/KM/KR 17

L Constraint Networks

e Goals and temporal constraints each connect a pair of time
points Goal Temporal Constraint

[min’, max’]

e Time points are often shared (e.g., one beginning as another
ends)

e A collection of connected goals and temporal constraints
form a constraint network

P e S,
- -
—-——— -
- -
- -
- -
-
- »
-

-

DD/KM/KR

18

4

ot Resolving Conflicts

e Example: three goals on the same state

##5 Crosshatched areas are
44 outside goal constraints

The constraint —
<4—|—— The time interval ———»

+] " | ., o 4— flexible start —p
G oal 3 vvvvv
— Goals 1 and 2 overlap, so Goal 3 is incompatible with Goal 2,
they’re compatible, as is but it can wait
Executable | 7 ST
Goal
Timeline

Time

DD/KM/KR 19

4

- State Timelines

e State timelines maintain the value or set of possible values
(e.g., a range) of a state variable as a function of time

e They capture both knowledge and intent about state

: 4 R
R s e r—} . e . >
time
N Don’t]
0 0 0 0) Care
a discrete state time

DD/KM/KR 20

-4 Timeline Execution

e Goals are accepted if successfully placed on the timeline
for the goal state variable

e Goals are frozen and acted upon when they appear on the timeline
in the immediate future

e Goals are acted upon by achievers assigned to each state variable
e Elaborators monitor execution and adapt plans, as necessary

Intent 7

... given the
present goals ...

... and given the
present state, ...

Knowledge T/'J“\-Q(\’ '
Time

DD/KM/KR 21

... achieve the goals.

ﬁ Putting It Together

 Elaborators, scheduling, ...
» Goal/event-driven
* Planning and constraint solving
* Analogous to sequencing, mode
and configuration control, fault
responses

- S~

 Elaborators

Executable
Gaal

 Achievers, DM/DT, .~ DM/DT

* Provide system behaviors
s Managed via goals and temporal constraints
s Fairly conventional real-time monitoring and control processes

DD/KM/KR 22

DD/KM/KR

i
-

(f’g"f/;?;»ff* b

S
e

o

G

e

o . .
e
Lo

/}’*« s
o L e
onnector
- . o

.-

.

.

Gl
G
o

gg‘w“(’

N

o

o . o . ~(3)§§§\\?

e First class types
and instances

e Components,
connectors,
interfaces

e Explicit interface
ports

e Describe
semantics of
interface use

e Type safety

e Role safety

23

4

it Benefits: Development & Testing

e Complex interactions understood at mission, system and component
levels

e State decomposition facilitates tracking of system scalability

e Domain knowledge expressed explicitly as models

e Component architecture facilitates measures of responsiveness

e Architecture requires state be determined honestly from the evidence

e Architecture provides a mechanism for identifying the range and impact
of faults

e Architecture authorizes and monitors all resource usage

e Uniform architecture facilitates cost tracking associated with system
complexity and system reconfiguration.

e Cost models based on objective development data facilitate estimation
of fault-related development.

DD/KM/KR 24

ﬁ Benefits: Safer Software

e |nitialization/finalization dependencies explicitly represented
e Dependency order enforced
e Automatic detection of circular dependencies

¢ Software interfaces and interactions elevated to first-class design
elements

o Eliminates ‘hidden’ interactions that cause hard-to-find problems

e Component approach facilitates use of advanced verification techniques
¢ Detect synchronization errors that cause deadlocks and data races

¢ Run-time component manager enforces architectural rules regarding
instantiation of components and valid connections

DD/KM/KR 25

4 Benefits: Verification by Design

® Goals specify explicit constraints on state and time that are continually
monitored, so deviations from expected behavior are immediately
reported.

e Errors in units of measurement detected through Sl units package
e Component manager enforces architectural rules about legal connections

e The initialization/finalization package reports circular dependencies and
improperly held resources

e Unified state architecture supports direct comparison between simulated
state and estimated state

® Separation of models from reusable algorithms makes validation of
mission-specific items simpler

® ‘Smart pointers’ eliminate problems of memory leaks and dangling
pointers

DD/KM/KR 26

ﬁ Benefits: Mission Operations

e Operation based on what (constraints on state) rather than how
(command sequences)

e Operators can migrate capability and responsibility from ground to flight
system to simplify operations and reduce communication needs

e Models express key functional relations among system states, command
effects, and observed measurements

e Disciplined architecture provides uniform fault-metric mechanisms
e Fault sources are explicitly captured in goal-failure trees
e Fault response is explicitly modeled as goal elaborations

e Uniform data collection mechanism facilitates run-time monitoring and
metrics associated with adaptivity and diagnosability

DD/KM/KR 27

Al

MDS Framework Packages

Application Services Goal Elaboration State Data : - Component
¢ o Simulation
Level 5 Language Query Visualization Scheduler
e
State Services State anwledge Gogl Achiever: Goal Hardware Graph State
Level 4 -state variable -estimator, controller Network Proxy Variable
V- -state value -Measurement, command
Complex Services Components & Value Hlsto_ry Data Cgtalog Data Tranqurt
-sampled history -collection, entry, event -sender, receiver
Level 3 Connectors AN .)
-time-interval history -data product -session, request
Simple Services Embedded web Event Log | | Naming Time Data Mgmt | | CCSDS File
Level 2 Server & client Facility Services Services Policy Delivery Protocol
Initialization & Data Exception Physics Library: Math Library
. ; Finalization Serialization Classes -S| Units -Linear algebra
P”m't:j’e Sﬁw'ces J -Coordinate systems | | -Probability dist.
eve Standard Sequential Graph -Position, yelomty & -Polynomials
Utility classes Estimation Library deceleration “0-DOF classes
OS Services C++ Standard Unit Testing Adaptive Communication IN Real Time
Level 0 Library Package Environment Operating System

DD/KM/KR

28

The MDS Common Model

e The MDS Framework is the collection of most
core classes within the MDS architecture
¢ Developed and maintained exclusively by MDS

¢ Uniform (except for versioning) across MDS
adaptations

e Each project does an Adaptation of the

g framework

e Captures project requirements and scenarios

Adabptati o Extends framework classes to address

aptation functions and configurations specific to the

project

e Reusable extensions are generalized (if
necessary) and moved to the framework

b | | e Several Deployments of the adaptation are
I defined
Deployments f o These are the executable configurations to be

used in various settings (test beds, flight,
ground, etc.)

29

. 4 Reuse Among Projects

Project 1 Project 2 Etc. e Each project uses the same
framework, except that later
Bantoymats S colesinents projects will adapt later versions

e Can continue to track framework

T —— evolution up to some freeze point

' ’ e Updates to frozen version are

confined to that project

_ _ e Though mainline framework
Adaptation [«----|-| Adaptation development may decide to make
some of the same updates

e Projects can adapt from one

: another

e - A similar track-then-freeze config-
' uration management process
would be necessary

1 1

—— v s

DD/KM/KR 30

4

et Summary

e MDS addresses...

e Architectures for both functional and software design interactions
e Unification and reuse across deployments and projects

e A wide range of technical issues from autonomous control to data
management

e The collaboration of systems and software engineering

e Processes, tools, and design rigor up to the challenge of a flight
program

e State and Component Architectures are the bedrock of our
approach

e Each exploits a relatively small but powerful set of ideas

e The two architectures complement one another in a natural but far-
reaching manner

DD/KM/KR 31

n

DD/KM/KR y

