Formal Assessment Instrument for Ensuring the Security
of NASA’s Networks, Systems and Software

David P. Gilliam
Jet Propulsion Laboratory,
California Institute of Technology
David.P.Gilliam@jpl.nasa.gov

John D. Powell
Jet Propulsion Laboratory,
California Institute of Technology
John.Powell@jpl.nasa.gov

Josef Sherif
Jet Propulsion Laboratory,
California Institute of Technology
Josef.Sherif@jpl.nasa.gov

Abstract

Today there are a multitude of applications that are network aware and which often provide
services including login credentials. A key issue is the security of these applications. Do they inadvertently
allow compromise of the system on which they reside or the data on those systems? What insures that the
applications are not vulnerable to common problems such as race conditions or buffer overflows, and other
potential security problems?

Security vulnerabilities in software on networked systems provide attackers an avenue to
penetrate those systems. The source of these security weaknesses are usually traced to poor software
development practices, non-secure links between computing systems and applications, and mis-
configurations. An otherwise secure system can be compromised easily if a system or application software
on it, or on a linked system, has vulnerabilities. Currently, there is a lack of security assessment tools for
use in the software development and maintenance life cycle to mitigate these vulnerabilities.

To address this problem, the National Aeronautics and Space Administration (NASA) has funded
the Jet Propulsion Lab in conjunction with the University of California at Davis (UC Davis) to begin work
on developing a software security assessment instrument for use in the software development and
maintenance life cycle, which is composed of 5 activities:

A Vulnerability Matrix (VMatrix)

Security Assessment Tools (SATs)

Property Based Tester (PBT)

Model Based Verification (MBV) with the use of a Flexible Modeling Framework (FMF)
Software Security Checklist (SSC)

To date 4 critical activities have been delivered and are being made available to the internet community:
1) VMatrix, 2) SATs, 3) PBT, and 4) A Report on MBV methodology for security.

The vuinerability database is an outgrowth of a vulnerability matrix developed for NASA. Its
purpose is to provide information about various vulnerabilities including the exploit used to gain access,
how to protect against the exploit and the Common Exposures and Enumeratives (CVE) listing. The
information is being transferred to the UC Davis Database Of Vulnerabilities, Exploits, and Signatures
(DOVES) where it will be maintained and updated as new exploits are discovered. This information is
used to extract properties and requirements that express potential network vulnerabilities. Thesgproperties
can then be utilized by the PBT tool and the FMF.

The SATs are a collection and an assessment of publicly available software security code checking
tools available on the Internet that can be used to test for potential weaknesses of software code. This list
includes a description of each of the tools and their uses. It will be updated as additional tools become
available.

http://nasa.gov
http://nasa.gov

The PBT tool performs formal verification of properties, including those obtained from the
vulnerability matrix, at the code level. Properties are verified by slicing the code in search of the specific
vulnerability properties in question.

Like the PBT tool, the FMF aids in formally verification of properties over an abstract model of
the system. The FMF performs this function at the abstract level before code exists.

The SSC has two foci: 1) a checklist to verify that software released by NASA does not provide
users backdoors or encrypted channels into NASA networks or provide other information about NASA’s
systems or networks (such as IP Address space); 2) a potential checklist for code developers to write secure
code for network aware applications, such as use of network ports, protocols, authentication, privileges,
etc.

The assessment instrument is a comprehensive set of tools that can be used individually or
together to ensure the security of network aware software application and systems. Using the various tools
together provide a distinct advantage. Each tool’s resulting output provides feedback into the other tools.
Thus, more comprehensive assessment results are attained though the leverage each tool provides to the
other when they are employed in concert.

An ongoing effort is underway with the Multi-Mission Encryption Communication System (MECS)
to pilot the usage of this security assessment instrument.

Acknowledgement

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. The work was sponsored by the NASA
Office of Safety and Mission Assurance under the Software Assurance Research Program lead by the
NASA Software IV&V Facility. This activity is managed locally at JPL through the Assurance and
Technology Program Office.

For further information about this ongoing research, refer to http://rssr.jpl.nasa.gov

Integrated Approach to Assuring
Software

JPL

« NOTE:

— This research was carried out at the Jet
Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

— The work was sponsored by the NASA Office of
‘Safety and Mission Assurance under the
- Software Assurance Research Program lead by
the NASA Software IV&V Facility. '

— This activity is managed locally at JPL through
the Assurance and Technology Program Office.

May 17, 2002 2

<SPl

Collaborators

 David Gilliam - Principle Investigator e
Network and Computer Security, JPL

* John Powell — Research Engineer
Quality Assurance, JPL

* Josef Sherif — Research Engineer
Network and Computer Security, JPL

* Matt Bishop — Associate Professor of Computer
Science, University of California at Davis

May 17, 2002 3

Pl

Each part of the instrument .
supports the other parts VMatrix
» VMatrix provides known

vulnerability properties to PBT
and MBV

Attacks not found w
in the Wild LS

> PBT provides newly discovered
code vulnerabilities to the
Vmatrix property set and code
level verification feedback to
MBV

> MBYV provides newly discovered
vulnerabilities scenarios to the
Vmatrix property set and early
lifecycle verification results to
PBT for tracability purposes

May 17, 2002 4

SRl

Collection of Each Individual Component > SPIN Model
Model Checker
Components) A

Combination No
State Space is

too Large

Yes

Unique Component
Combinations

Heuristic
Propagation
of Results

) 4
Component
Combiner * A 4

0 SuuILjuo)) SUOHBUIqUIO))

Update Implicit | Explicit
Component o > MCCT

May 17, 2002 5

Compare program
actions with
specifications

— Create low-level
specifications

— Instrument program
to check that these
hold

— Run program under
run-time monitor

— Report deviations

May 17, 2002

JPL

Pl

* Vulnerability matrix to assist security experts and
programmers where best to expend their efforts

> DOVES database:
http://seclab.cs.ucdavis.edu/projects/vulnerabilities/

» Uses the Common Vulnerabilities and Exposures (CVE)
dictionary ID

» Ranks vulnerabilities based on severity versus
frequency

» Contains signatures used to exploit the vulnerability oy
signatures used with the Tester’s Assistant

» Maintained by UC Davis and SANS

May 17, 2002 7

JPL

cklist (SSC)

* The Software Security Checklist (SSC) will:

> Provide software code developers with an instrument
for writing secure code for network aware applications,
such as the use of network ports, protocols,
authentication, privileges, etc...

» Ensure that released software does not provide
backdoors into or information about an organization’s
systems or networks

May 17, 2002 8

» Security Assessment Tools (SATSs):

» Collection of tools for assuring the security of
the systems and software on them

» Property Based Testing Tool (PBT) — UC Davis
(Matt Bishop)

— Code insertion for testing properties

— Verify the properties are not violated after compiled

— JAVA based — look to port to C, C++, Perl, Mobile
Code

> Tool list maintained by UC Davis

May 17, 2002 9

